To improve the global stiffness and conveniently build a model of a compliant mechanism with spatial multiple degrees of freedom(DOF),the topology optimization method,combined with the isomorphic mapping matrix,is pro...To improve the global stiffness and conveniently build a model of a compliant mechanism with spatial multiple degrees of freedom(DOF),the topology optimization method,combined with the isomorphic mapping matrix,is proposed in this paper for structure synthesis of a 6-DOF spatial compliant mechanism.By using the differential approximation method,the Jacobian matrix of the Stewart prototype platform is calculated as the isomorphic mapping matrix,and its eigenvalues and eigenvectors are considered.Combining the isomorphic mapping matrix with the solid isotropic material with the penalization topology optimization method,the topological model of the 6-DOF spatial compliant mechanism is constructed,and a topological structure of the 6-DOF spatial compliant mechanism is derived which has the same differential kinematic characteristics as the Gough-Stewart prototype platform.Piezoelectric actuators are mounted inside the topological structure during the three-dimensional printing manufacturing process,and its driver directions are in accordance with the driver configuration directions of the Gough-Stewart prototype platform.The effectiveness of the proposed method for topological structure synthesis of the 6-DOF spatial compliant mechanism is demonstrated through several numerical examples and experimental studies.展开更多
Some approaches to measure parallel 6-degree of freedom platform's posturestatically and to calibrate the platform's actual structural parameters by measuring a series of theplatform's varying postures are...Some approaches to measure parallel 6-degree of freedom platform's posturestatically and to calibrate the platform's actual structural parameters by measuring a series of theplatform's varying postures are studied. In the case where high posture accuracy is requiredrelatively, to obtain the platform's actual structural parameters is very important. Threedimensions measurement with 2 theodolites are used to obtain the platform's postures statically andNewton iterative method is adopted to calibrate structural parameters. Some measures taken in themeasurement and the calibration are discussed in detail. And the experiment results of theplatform's posture control before and after the calibration are given. The results show that theplatform's posture control accuracy after the calibration is improved notably.展开更多
基金This research was supported by the National Natural Science Foundation of China(Grant 51165009)the Innovation School Project of Education Department of Guangdong Province,China(Grant 2017KZDXM060).
文摘To improve the global stiffness and conveniently build a model of a compliant mechanism with spatial multiple degrees of freedom(DOF),the topology optimization method,combined with the isomorphic mapping matrix,is proposed in this paper for structure synthesis of a 6-DOF spatial compliant mechanism.By using the differential approximation method,the Jacobian matrix of the Stewart prototype platform is calculated as the isomorphic mapping matrix,and its eigenvalues and eigenvectors are considered.Combining the isomorphic mapping matrix with the solid isotropic material with the penalization topology optimization method,the topological model of the 6-DOF spatial compliant mechanism is constructed,and a topological structure of the 6-DOF spatial compliant mechanism is derived which has the same differential kinematic characteristics as the Gough-Stewart prototype platform.Piezoelectric actuators are mounted inside the topological structure during the three-dimensional printing manufacturing process,and its driver directions are in accordance with the driver configuration directions of the Gough-Stewart prototype platform.The effectiveness of the proposed method for topological structure synthesis of the 6-DOF spatial compliant mechanism is demonstrated through several numerical examples and experimental studies.
基金This project is supported by National Defense Science and Technology Multi-vocation Foundation in Advance Research of China(No. 97J465JW0408).
文摘Some approaches to measure parallel 6-degree of freedom platform's posturestatically and to calibrate the platform's actual structural parameters by measuring a series of theplatform's varying postures are studied. In the case where high posture accuracy is requiredrelatively, to obtain the platform's actual structural parameters is very important. Threedimensions measurement with 2 theodolites are used to obtain the platform's postures statically andNewton iterative method is adopted to calibrate structural parameters. Some measures taken in themeasurement and the calibration are discussed in detail. And the experiment results of theplatform's posture control before and after the calibration are given. The results show that theplatform's posture control accuracy after the calibration is improved notably.