An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar par...An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar parameters of interest of the DAR(1) model. Theoretically, the proposed method has rate of convergence O(n-3/2). Applying the proposed method to a real-life data set shows that the results obtained by the proposed method can be quite different from the results obtained by the existing methods. Results from Monte Carlo simulation studies illustrate the supreme accuracy of the proposed method even when the sample size is small.展开更多
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonl...Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.展开更多
In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an emp...In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an empirical log-likelihood ratio base on this estimator. Our result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood ratio is proved to be asymptotically standard chi-squared.展开更多
文摘An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar parameters of interest of the DAR(1) model. Theoretically, the proposed method has rate of convergence O(n-3/2). Applying the proposed method to a real-life data set shows that the results obtained by the proposed method can be quite different from the results obtained by the existing methods. Results from Monte Carlo simulation studies illustrate the supreme accuracy of the proposed method even when the sample size is small.
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.
文摘In this article we study the empirical likelihood inference for AR(p) model. We propose the moment restrictions, by which we get the empirical likelihood estimator of the model parametric, and we also propose an empirical log-likelihood ratio base on this estimator. Our result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood ratio is proved to be asymptotically standard chi-squared.