We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh...We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.展开更多
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores...A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.展开更多
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning...By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.展开更多
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an...Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.展开更多
The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative ana...The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.展开更多
Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization...Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects.展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading del...High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.展开更多
The double-network prepared with an in-situ monomer gel and a fast-crosslinked Cr(III) gel is introduced to develop a thixotropic and high-strength gel (THSG), which is found to have many advantages over the tradition...The double-network prepared with an in-situ monomer gel and a fast-crosslinked Cr(III) gel is introduced to develop a thixotropic and high-strength gel (THSG), which is found to have many advantages over the traditional gels. The THSG gel demonstrates remarkable thermal stability, and no syneresis is observed after 12 months with high salinity brine (95,500 mg/L). Moreover, the SEM and XRD results indicate that the gel is intercalated into the lamellar structures of Na-MMT, where the gel can form a uniform and compact structure. In addition, the THSG gel has an excellent swelling behavior, even in the high salinity brine. In the slim tube experiments, the THSG gel exhibits high rupture pressure and improves blocking capacity after being ruptured. The core flooding results show that a layer of gel filter cake is formed on the face of the fracture, which may be promoted by a high matrix permeability, a small aperture fracture, and a high injection rate. After the gel treatment, the fracture can be completely blocked by the THSG gel. It is found that a high incremental oil recovery (65.3%) can be achieved when the fracture was completely blocked, compared to 40.2% if the gel is ruptured. Although the swelling of ruptured gel can improve oil recovery, part of the injected brine may be channeled through the gel-filled fractures, resulting in a decrease in the sweep efficiency. Therefore, the improved blocking ability by gel swelling (e.g., in fresh water) may be less efficient to contribute to an enhancement of oil recovery. It is also found that the pressure gradient and residual resistance factor to water (Frrw) are higher if the matrix is less permeable, indicating that the fractured reservoir with lower matrix permeability may require a higher gel strength for treatment. The findings of this study may provide novel insights on designing robust double network gels for water shutoff in fractured reservoirs.展开更多
In cognitive radio networks(CoR),the performance of cooperative spectrum sensing is improved by reducing the overall error rate or maximizing the detection probability.Several optimization methods are usually used to ...In cognitive radio networks(CoR),the performance of cooperative spectrum sensing is improved by reducing the overall error rate or maximizing the detection probability.Several optimization methods are usually used to optimize the number of user-chosen for cooperation and the threshold selection.However,these methods do not take into account the effect of sample size and its effect on improving CoR performance.In general,a large sample size results in more reliable detection,but takes longer sensing time and increases complexity.Thus,the locally sensed sample size is an optimization problem.Therefore,optimizing the local sample size for each cognitive user helps to improve CoR performance.In this study,two new methods are proposed to find the optimum sample size to achieve objective-based improved(single/double)threshold energy detection,these methods are the optimum sample size N^(*)and neural networks(NN)optimization.Through the evaluation,it was found that the proposed methods outperform the traditional sample size selection in terms of the total error rate,detection probability,and throughput.展开更多
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t...Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.展开更多
Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geoph...Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method.展开更多
A highly sensitive double artificial neural network (DANN) analysis with flow-injection chemiluminescence (FI-CL) has been developed to simultaneously determine the trace amounts of the gold and platinum in simula...A highly sensitive double artificial neural network (DANN) analysis with flow-injection chemiluminescence (FI-CL) has been developed to simultaneously determine the trace amounts of the gold and platinum in simulated mixed samples, without the boring process.展开更多
As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orb...As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.展开更多
Presents a new algorithm for diameter of double loop network(DLN) by which two new classes of infinite families of tight DLN of the known twelve infinie families of tight DLNs, under 3.3 in [1] including eleven are co...Presents a new algorithm for diameter of double loop network(DLN) by which two new classes of infinite families of tight DLN of the known twelve infinie families of tight DLNs, under 3.3 in [1] including eleven are constructed.展开更多
A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) ar...A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) are source voltage, workplace voltage, working pressure and distance between source electrode and workpiece. The output of the NN model is three important technical targets, namely the gross element content, the thickness of surface alloying layer and the absorption rate (the ratio of the mass loss of source materials to the increasing mass of workpiece) in the processing of double glow plasma surface alloying. The processing parameters and technical target are then used as a training set for an artificial neural network. The model is based on multiplayer feedforward neural network. A very good performance of the neural network is achieved and the calculated results are in good agreement with the experimental ones.展开更多
A routing algorithm for distributed optimal double loop computer networks is proposed and analyzed. In this paper, the routing algorithm rule is described, and the procedures realizing the algorithm are given. The pr...A routing algorithm for distributed optimal double loop computer networks is proposed and analyzed. In this paper, the routing algorithm rule is described, and the procedures realizing the algorithm are given. The proposed algorithm is shown to be optimal and robust for optimal double loop. In the absence of failures,the algorithm can send a packet along the shortest path to destination; when there are failures,the packet can bypasss failed nodes and links.展开更多
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.226801001)。
文摘We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.
基金financially supported by the National Natural Science Foundation of China(Nos.52120105007 and 52374062)the Innovation Fund Project for Graduate Students of China University of Petroleum(East China)supported by“the Fundamental Research Funds for the Central Universities”(23CX04047A)。
文摘A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.
基金funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+1 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Central Leading Local Science and Technology Development Fund Project of Wuzhou(No.202201001).
文摘By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.
基金Projects(42174170,41874145,72088101)supported by the National Natural Science Foundation of ChinaProject(CX20200228)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.
基金supported by funding from National Natural Science Foundation of China(Grant Nos.32002074 and 31872135)China Postdoctoral Science Foundation(Grant No.2021M693445)。
文摘The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.
基金funded by the Natural Science Foundation of Hebei Province(No:E2020210068)Project of Science and Technology Research and Development Program of China National Railway Group Co.,Ltd.(No:N2020G009).
文摘Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects.
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
基金supported by the National Natural Science Foundation of China (U1834211, 61925302, 62103033)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems (20210104)。
文摘High-speed rail(HSR) has formed a networked operational scale in China. Any internal or external disturbance may deviate trains’ operation from the planned schedules, resulting in primary delays or even cascading delays on a network scale. Studying the delay propagation mechanism could help to improve the timetable resilience in the planning stage and realize cooperative rescheduling for dispatchers. To quickly and effectively predict the spatial-temporal range of cascading delays, this paper proposes a max-plus algebra based delay propagation model considering trains’ operation strategy and the systems’ constraints. A double-layer network based breadth-first search algorithm based on the constraint network and the timetable network is further proposed to solve the delay propagation process for different kinds of emergencies. The proposed model could deal with the delay propagation problem when emergencies occur in sections or stations and is suitable for static emergencies and dynamic emergencies. Case studies show that the proposed algorithm can significantly improve the computational efficiency of the large-scale HSR network. Moreover, the real operational data of China HSR is adopted to verify the proposed model, and the results show that the cascading delays can be timely and accurately inferred, and the delay propagation characteristics under three kinds of emergencies are unfolded.
基金financial support from the Major Scientific and Technological Projects of CNPC under Grant(ZD2019-183-007)is gratefully acknowledge.
文摘The double-network prepared with an in-situ monomer gel and a fast-crosslinked Cr(III) gel is introduced to develop a thixotropic and high-strength gel (THSG), which is found to have many advantages over the traditional gels. The THSG gel demonstrates remarkable thermal stability, and no syneresis is observed after 12 months with high salinity brine (95,500 mg/L). Moreover, the SEM and XRD results indicate that the gel is intercalated into the lamellar structures of Na-MMT, where the gel can form a uniform and compact structure. In addition, the THSG gel has an excellent swelling behavior, even in the high salinity brine. In the slim tube experiments, the THSG gel exhibits high rupture pressure and improves blocking capacity after being ruptured. The core flooding results show that a layer of gel filter cake is formed on the face of the fracture, which may be promoted by a high matrix permeability, a small aperture fracture, and a high injection rate. After the gel treatment, the fracture can be completely blocked by the THSG gel. It is found that a high incremental oil recovery (65.3%) can be achieved when the fracture was completely blocked, compared to 40.2% if the gel is ruptured. Although the swelling of ruptured gel can improve oil recovery, part of the injected brine may be channeled through the gel-filled fractures, resulting in a decrease in the sweep efficiency. Therefore, the improved blocking ability by gel swelling (e.g., in fresh water) may be less efficient to contribute to an enhancement of oil recovery. It is also found that the pressure gradient and residual resistance factor to water (Frrw) are higher if the matrix is less permeable, indicating that the fractured reservoir with lower matrix permeability may require a higher gel strength for treatment. The findings of this study may provide novel insights on designing robust double network gels for water shutoff in fractured reservoirs.
基金This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R97),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In cognitive radio networks(CoR),the performance of cooperative spectrum sensing is improved by reducing the overall error rate or maximizing the detection probability.Several optimization methods are usually used to optimize the number of user-chosen for cooperation and the threshold selection.However,these methods do not take into account the effect of sample size and its effect on improving CoR performance.In general,a large sample size results in more reliable detection,but takes longer sensing time and increases complexity.Thus,the locally sensed sample size is an optimization problem.Therefore,optimizing the local sample size for each cognitive user helps to improve CoR performance.In this study,two new methods are proposed to find the optimum sample size to achieve objective-based improved(single/double)threshold energy detection,these methods are the optimum sample size N^(*)and neural networks(NN)optimization.Through the evaluation,it was found that the proposed methods outperform the traditional sample size selection in terms of the total error rate,detection probability,and throughput.
基金supported by the National Natural Science Foundation of China (No.51273189)the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05016),the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05046)
文摘Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.
基金funded by R&D Department of China National Petroleum Corporation(2022DQ0604-04)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)the Science Research and Technology Development of PetroChina(2021DJ1206).
文摘Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method.
文摘A highly sensitive double artificial neural network (DANN) analysis with flow-injection chemiluminescence (FI-CL) has been developed to simultaneously determine the trace amounts of the gold and platinum in simulated mixed samples, without the boring process.
基金National Natural Science Foundation of China(60532030)
文摘As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.
文摘Presents a new algorithm for diameter of double loop network(DLN) by which two new classes of infinite families of tight DLN of the known twelve infinie families of tight DLNs, under 3.3 in [1] including eleven are constructed.
文摘A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) are source voltage, workplace voltage, working pressure and distance between source electrode and workpiece. The output of the NN model is three important technical targets, namely the gross element content, the thickness of surface alloying layer and the absorption rate (the ratio of the mass loss of source materials to the increasing mass of workpiece) in the processing of double glow plasma surface alloying. The processing parameters and technical target are then used as a training set for an artificial neural network. The model is based on multiplayer feedforward neural network. A very good performance of the neural network is achieved and the calculated results are in good agreement with the experimental ones.
文摘A routing algorithm for distributed optimal double loop computer networks is proposed and analyzed. In this paper, the routing algorithm rule is described, and the procedures realizing the algorithm are given. The proposed algorithm is shown to be optimal and robust for optimal double loop. In the absence of failures,the algorithm can send a packet along the shortest path to destination; when there are failures,the packet can bypasss failed nodes and links.