1 Introduction In recent years porous carbons have been widely used in many fields such as energy storage(Mc Creery,2008;Liu et al,2009;Ho et al,2014;Yang et al,2015),adsorption,wastewater treatment,air purification
In this paper, ATLAS 2D device simulator of SILVACO was used for device simulation of inverted- staggered thin film transistor using amorphous indium gallium zinc oxide as active layer (a-IGZO-TFT) with double activ...In this paper, ATLAS 2D device simulator of SILVACO was used for device simulation of inverted- staggered thin film transistor using amorphous indium gallium zinc oxide as active layer (a-IGZO-TFT) with double active layers, based on the density of states (DOS) model of amorphous material. The change of device performance induced by the thickness variation of each active layer was studied, and the interface between double active layers was analyzed. The best performance was found when the interface was near the edge of the channel, by optimizing the thickness of each active layers, the high performance device of threshold voltage (Vth) = -0.89 V, sub-threshold swing (SS)= 0.27, on/off current ratio (IoN/IoFF) = 6.98 × 10^14 was obtained.展开更多
基金financial support from the National Natural Science Foundation of China (51274015)National Program on Key Basic Research Project (973 Program) (2014CB846000)Test Fund of Peking University
文摘1 Introduction In recent years porous carbons have been widely used in many fields such as energy storage(Mc Creery,2008;Liu et al,2009;Ho et al,2014;Yang et al,2015),adsorption,wastewater treatment,air purification
文摘In this paper, ATLAS 2D device simulator of SILVACO was used for device simulation of inverted- staggered thin film transistor using amorphous indium gallium zinc oxide as active layer (a-IGZO-TFT) with double active layers, based on the density of states (DOS) model of amorphous material. The change of device performance induced by the thickness variation of each active layer was studied, and the interface between double active layers was analyzed. The best performance was found when the interface was near the edge of the channel, by optimizing the thickness of each active layers, the high performance device of threshold voltage (Vth) = -0.89 V, sub-threshold swing (SS)= 0.27, on/off current ratio (IoN/IoFF) = 6.98 × 10^14 was obtained.