The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum ...The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input.展开更多
The characteristics of weld shape,microstructure,mechanical properties and defects of 5A90 Al-Li alloy joint by laser welding (LBW) and laser welding with filler wire (LWFW) were studied and analyzed.The results indic...The characteristics of weld shape,microstructure,mechanical properties and defects of 5A90 Al-Li alloy joint by laser welding (LBW) and laser welding with filler wire (LWFW) were studied and analyzed.The results indicated that the microstructure of joint by LWFW was fine-grained layer and the equiaxed grain in most of seams,which were similar to the joint by LBW.Compared with the joint by LBW,the microstructure of joint by LWFW tended to fine,and the range of the columnar crystals zone was prone to decrease.The Microhardness of the joint by LWFW (92.57HV0.2) was lower than that by LBW (95.65HV0.2),but the uniformity was better.The ultimate tensile strength of the joint by LWFW was lower than that by LBW slightly,which reached to 73.03% and 79.22% of the base metal respectively.However,the elongation of the LWFW joint was higher than that of the LBW joint significantly,which reached to 38.65% and 20.38% of the base metal respectively.The microstructure and mechanical properties of 5A90 Al-Li alloy by LWFW were better than that by LBW.The defects of joint were mainly forming defects which were caused by improper parameters and porosity inside the joint,which was caused by uncleaned surface and incomplete penetration.展开更多
基金supported by the Key Science and Technology of Jilin Province(Grant No.20140204070GX)
文摘The weld appearance, deposition rate, welding efficiency, stability of arc, laser keyhole characteristic, and weld property were studied by using a novel laser-MIG hybrid welding process with filling wire of aluminum alloy. The results were also compared with those by conventional laser-MIG hybrid welding process. It was found that with the suitable process parameters this novel welding process for aluminum alloy was stable and final weld bead had fine appearance. Compared to conventional laser-MIG hybrid welding process, during this novel welding process the stability of arc, the laser keyhole characteristic and the weld property were similar, while the keyhole cycle frequency and keyhole opening area had differences of 1.23% and 15.34%, respectively, and the welding efficiency increased by about 31% without increasing heat input.
文摘The characteristics of weld shape,microstructure,mechanical properties and defects of 5A90 Al-Li alloy joint by laser welding (LBW) and laser welding with filler wire (LWFW) were studied and analyzed.The results indicated that the microstructure of joint by LWFW was fine-grained layer and the equiaxed grain in most of seams,which were similar to the joint by LBW.Compared with the joint by LBW,the microstructure of joint by LWFW tended to fine,and the range of the columnar crystals zone was prone to decrease.The Microhardness of the joint by LWFW (92.57HV0.2) was lower than that by LBW (95.65HV0.2),but the uniformity was better.The ultimate tensile strength of the joint by LWFW was lower than that by LBW slightly,which reached to 73.03% and 79.22% of the base metal respectively.However,the elongation of the LWFW joint was higher than that of the LBW joint significantly,which reached to 38.65% and 20.38% of the base metal respectively.The microstructure and mechanical properties of 5A90 Al-Li alloy by LWFW were better than that by LBW.The defects of joint were mainly forming defects which were caused by improper parameters and porosity inside the joint,which was caused by uncleaned surface and incomplete penetration.