This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorpti...This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorption and sound insulation performances are analyzed.Results show that the aperture of the micro-perforated plate has the greatest influence on the sound absorption coefficient;the smaller the aperture,the greater is this coefficient.The thickness of the resonance plate has the most significant influence on the sound insulation and resonance frequency;the greater the thickness,the wider the frequency domain in which sound insulation is obtained.In addition,the effect of filling the structural cavity with porous foam ceramics has been studied,and it has been found that the porosity and thickness of the porous material have a significant effect on the sound absorption coefficient and sound insulation,while the pore size exhibits a limited influence.展开更多
The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are con...The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are constantly kept at a relatively high(fixed)temperature,while the cavity’s upper wall is cooled.The finite volume approach is used to solve the mass,momentum,and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling.Emphasis is put on the influence of the tilt angle on the solution symmetry,flow structure,and heat exchange through the walls.The following parameters and related ranges are considered:Rayleigh number 104≤Ra≤5.105,tilt angle 0°≤φ≤90°,Reynolds number 100≤Re≤1000,Prandtl number Pr=0.72,block height B=0.5,opening width C=0.15,and distance between blocks D=0.5.The results reveal different branches of solutions on varying Re andφ.They also show that the symmetry of the solution regarding the P_(2)axis is retained for all cases with no tilt and for values of Re between 100 and 1000.展开更多
The Bell-nonlocality of two initially entangled macroscopic fields in the double Jaynes-Cummings model is investigated. Moreover, the process by which detuning between the atomic transition frequency and the field fre...The Bell-nonlocality of two initially entangled macroscopic fields in the double Jaynes-Cummings model is investigated. Moreover, the process by which detuning between the atomic transition frequency and the field frequency affects the evolution of the Beil-nonlocality of two macroscopic fields is studied. The effect of the disparitv between the two coupling strengths is discussed.展开更多
基金This study was supported by State Grid Corporation Science and Technology Project“Research on Comprehensive Control Technology of Low Frequency Noise of Distribution Transformers in Residential Areas”(5216A019000P).
文摘This study investigates a dual-cavity resonant composite sound-absorbing structure based on a micro-perforated plate.Using the COMSOL impedance tube model,the effects of various structural parameters on sound absorption and sound insulation performances are analyzed.Results show that the aperture of the micro-perforated plate has the greatest influence on the sound absorption coefficient;the smaller the aperture,the greater is this coefficient.The thickness of the resonance plate has the most significant influence on the sound insulation and resonance frequency;the greater the thickness,the wider the frequency domain in which sound insulation is obtained.In addition,the effect of filling the structural cavity with porous foam ceramics has been studied,and it has been found that the porosity and thickness of the porous material have a significant effect on the sound absorption coefficient and sound insulation,while the pore size exhibits a limited influence.
文摘The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are constantly kept at a relatively high(fixed)temperature,while the cavity’s upper wall is cooled.The finite volume approach is used to solve the mass,momentum,and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling.Emphasis is put on the influence of the tilt angle on the solution symmetry,flow structure,and heat exchange through the walls.The following parameters and related ranges are considered:Rayleigh number 104≤Ra≤5.105,tilt angle 0°≤φ≤90°,Reynolds number 100≤Re≤1000,Prandtl number Pr=0.72,block height B=0.5,opening width C=0.15,and distance between blocks D=0.5.The results reveal different branches of solutions on varying Re andφ.They also show that the symmetry of the solution regarding the P_(2)axis is retained for all cases with no tilt and for values of Re between 100 and 1000.
基金supported by the Fujian Department of Education (No. JB08011)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministrythe Doctoral Foundation of the Ministry of Education of China (No. 20070386002)
文摘The Bell-nonlocality of two initially entangled macroscopic fields in the double Jaynes-Cummings model is investigated. Moreover, the process by which detuning between the atomic transition frequency and the field frequency affects the evolution of the Beil-nonlocality of two macroscopic fields is studied. The effect of the disparitv between the two coupling strengths is discussed.