The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structure...The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries (LIBs). The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g^-1 at a current density of 100 mA g^-1 and superior cycling performance of 1113 mAh g^-1 over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductiv让y and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer. The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.展开更多
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates...The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.展开更多
A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces...A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.展开更多
The magnesium matrix double interpenetrating composites reinforced by nickel foam were fabricated by pressureless infiltration technology.Then the morphology of the nickel reinforcement and the microstructures of comp...The magnesium matrix double interpenetrating composites reinforced by nickel foam were fabricated by pressureless infiltration technology.Then the morphology of the nickel reinforcement and the microstructures of composites were characterized by SEM.The results show that not only is the nickel foam reinforcement reticular in three dimensions,but also the struts of foam keep the network structure,which ensures that the Ni foam/Mg composites are double interpenetrating.The interface bonding of composites between magnesium matrix and nickel foam reinforcement is good,without reaction around the interface,which is the indispensable condition that advanced composites should possess.Magnesium matrix distributes in the windows of nickel foam,the triangle center holes and microhole of nickel struts,and the composites have double interpenetrating structure,which makes the composites have unique properties.展开更多
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with ...The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.展开更多
A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were establish...A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.展开更多
The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling ...The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.展开更多
The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl sol...The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl solution, the corrosion resistance of thecomposite alloying layer and single alloying layer is determined. The experimental results showthat the corrosion resistance of the composite alloying layer is obviously better than that of thesingle alloying layer. The structure and composition of passive films formed on the two kinds ofalloyed layers after electrochemical tests in 3.5 percent NaCl solution have been studied usingX-ray photoelectron spectroscopy (XPS). It is concluded that the double glow plasma surface alloyingof low carbon steel with the electric brush plating Ni interlayer is an appropriate technique toenhance the corrosion resistance compared with the single double glow surface alloying.展开更多
A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios betwe...A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios between Ecoflex20 and RT625.Tensile machine is used to test its ductility and hardness.The conductivity is measured through the source table.Finally,it is printed on the dielectric elastomers(DE)film,and the high-voltage amplifier is used for dielectric elastomers actuators(DEAs)dynamics testing.The results show that the compliant electrode has high tensile properties(>200%),low stiffness(<300 kPa)and well conductivity(0.0493 S/cm).It is proved that the DEAs displacement output is up to 1.189 mm by this compliant electrode under dynamic response,which is 1.64 times and 1.32 times of the same type.Moreover,this formula extends the curing time of the original compliant electrode ink.It can provide a reference for the production of compliant electrode and DEAs in the future.展开更多
The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In...The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.展开更多
Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/poro...Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.展开更多
Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribu...Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribution of DHP events in China during 2013–20 is analyzed.The synoptic types affecting DHP events are identified with the Lamb–Jenkinson circulation classification method.The meteorological and chemical causes of DHP events controlled by the main synoptic types are further investigated.Results show that DHP events(1655 in total for China during 2013–20)mainly occur over the North China Plain,Yangtze River Delta,Pearl River Delta,Sichuan Basin,and Central China.The occurrence frequency increases by 5.1%during 2013–15,and then decreases by 56.1%during 2015–20.The main circulation types of DHP events are“cyclone”and“anticyclone”,accounting for over 40%of all DHP events over five main polluted regions in China,followed by southerly or easterly flat airflow types,like“southeast”,“southwest”,and“east”.Compared with non-DHP events,DHP events are characterized by static or weak wind,high temperature(20.9℃ versus 23.1℃)and low humidity(70.0%versus 64.9%).The diurnal cycles of meteorological conditions cause PM_(2.5)(0300–1200 LST,Local Standard Time=UTC+8 hours)and O_(3)(1500–2100 LST)to exceed the national standards at different periods of the DHP day.Three pollutant conversion indices further indicate the rapid secondary conversions during DHP events,and thus the concentrations of NO_(2),SO_(2) and volatile organic compounds decrease by 13.1%,4.7%and 4.4%,respectively.The results of this study can be informative for future decisions on the management of DHP events.展开更多
In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples ar...In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.展开更多
It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and mi...It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.展开更多
The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double...The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double pulsar system. Accepting the spin-down age as a rough estimate(or often an upper limit) of the true age of the neutron star, we also impose the restrictions on the radius of this system. We calculate the radius of the recycled pulsar PSR J0737-3039 A ranges approximately from 8.14 to 25.74 km, and the composition of its neutron star nuclear matters is discussed in the mass-radius diagram.展开更多
In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by...In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.展开更多
In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cell...In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cells(RSOCs).The polarization resistance(Rp)of the composite electrode NBCCFGd0.1Ce0.9O2(GDC)is only 0.079Ωcm^2 at 800℃under air.The single cell based on NBCCF-GDC electrode displays a peak power density of 0.941 W/cm^2 in fuel cell mode and a low Rp value of 0.134Ωcm^2.In electrolysis cell mode,the cell displays an outstanding oxygen evolution reaction(OER)activity and shows current density as high as 0.92 A/cm^2 with 50 vol%AH(Absolute Humidity)at 800℃and applied voltage of 1.3 V.Most importantly,the cell exhibits admirable durability of 60 h both in electrolysis mode and fuel cell mode with distinguished reversibility.All these results suggest that NBCCF is a promising candidate electrode for RSOC.展开更多
In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop...In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop pillar stitches have better mechanical properties.展开更多
The hybrid SiC foam-SiC particles/Al double interpenetrating composites to be used as the brake materials of high speed train were fabricated by squeeze casting technique. The influence of the type of matrix on the me...The hybrid SiC foam-SiC particles/Al double interpenetrating composites to be used as the brake materials of high speed train were fabricated by squeeze casting technique. The influence of the type of matrix on the mechanical properties and the fracture mechanism of the hybrid composites was investigated. The interface bond in the hybrid composites is good for the composites have the unique double interpenetrating structure. The ductile matrix resists the propagation of the microcracks in the struts. During the microcrack propagation process, the energy absorption and the fracture surface area are increased, which increases the ductility of the hybrid composites. The compressive strength of the hybrid composite reinforced by the SiC with the total volume fraction of 53% is 660 MPa, which is higher than that of traditional composite reinforced by single SiC particles.展开更多
基金financially supported by the National Natural Science Foundation of China(21471096)Shanghai Pujiang Program(17PJD015)
文摘The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite (denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries (LIBs). The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g^-1 at a current density of 100 mA g^-1 and superior cycling performance of 1113 mAh g^-1 over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductiv让y and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer. The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.
基金Project supported by the National Natural Science Foundation of China(Nos.11402127,11290152 and 11072008)
文摘The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50875057 and 51075082)the State Key Laboratory of Robotics and Systems (HIT No. SKLRS200901A04)
文摘A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.
基金Project(07JD06)supported by Science Research Foundation of East China Jiaotong University,ChinaProject(09497)supported by Young Science Foundation of Jiangxi Province Education Office,China+1 种基金Project(2009GQC0014)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(50765005)supported by the National Natural Science Foundation of China
文摘The magnesium matrix double interpenetrating composites reinforced by nickel foam were fabricated by pressureless infiltration technology.Then the morphology of the nickel reinforcement and the microstructures of composites were characterized by SEM.The results show that not only is the nickel foam reinforcement reticular in three dimensions,but also the struts of foam keep the network structure,which ensures that the Ni foam/Mg composites are double interpenetrating.The interface bonding of composites between magnesium matrix and nickel foam reinforcement is good,without reaction around the interface,which is the indispensable condition that advanced composites should possess.Magnesium matrix distributes in the windows of nickel foam,the triangle center holes and microhole of nickel struts,and the composites have double interpenetrating structure,which makes the composites have unique properties.
文摘The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle.
基金Project(51178333)supported by the National Natural Science Foundation of ChinaProject(SLDRCE09-D-03)supported by the Ministry of Science and Technology of China
文摘A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.
文摘The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.
文摘The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl solution, the corrosion resistance of thecomposite alloying layer and single alloying layer is determined. The experimental results showthat the corrosion resistance of the composite alloying layer is obviously better than that of thesingle alloying layer. The structure and composition of passive films formed on the two kinds ofalloyed layers after electrochemical tests in 3.5 percent NaCl solution have been studied usingX-ray photoelectron spectroscopy (XPS). It is concluded that the double glow plasma surface alloyingof low carbon steel with the electric brush plating Ni interlayer is an appropriate technique toenhance the corrosion resistance compared with the single double glow surface alloying.
基金Science and Technology Talent Project of Xi’an Science and Technology Bureau,Shaanxi Province(No.2020KJRC0049)。
文摘A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios between Ecoflex20 and RT625.Tensile machine is used to test its ductility and hardness.The conductivity is measured through the source table.Finally,it is printed on the dielectric elastomers(DE)film,and the high-voltage amplifier is used for dielectric elastomers actuators(DEAs)dynamics testing.The results show that the compliant electrode has high tensile properties(>200%),low stiffness(<300 kPa)and well conductivity(0.0493 S/cm).It is proved that the DEAs displacement output is up to 1.189 mm by this compliant electrode under dynamic response,which is 1.64 times and 1.32 times of the same type.Moreover,this formula extends the curing time of the original compliant electrode ink.It can provide a reference for the production of compliant electrode and DEAs in the future.
基金Funded by the National Basic Research Program of Chinathe National Natural Science Foundation of China(51675266)+3 种基金the Aeronautical Science Foundation of China(2014ZB52024)the Fundamental Research Funds for the Central Universities(NJ20160038)the Jiangsu Innovation Program for Graduate Education(CXLX13_165)the Fundamental Research Funds for the Central Universities
文摘The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX13_165)+2 种基金the Fundamental Research Funds for the Central Universities,Aeronautical Science Foundation of China(No.2012ZB52026)Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.
基金supported by the National Natural Science Foundation of China(Grant Nos.41830965 and 41905112)the Key Program of the Ministry of Science and Technology of the People’s Republic of China(Grant No.2019YFC0214703)+2 种基金the Hubei Natural Science Foundation(Grant No.2022CFB027)supported by the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(Grant No.LAPC-KF-2023-07)the Key Laboratory of Atmospheric Chemistry,China Meteorological Administration(Grant No.2023B08).
文摘Fine particulate matter(PM_(2.5))and ozone(O_(3))double high pollution(DHP)events have occurred frequently over China in recent years,but their causes are not completely clear.In this study,the spatiotemporal distribution of DHP events in China during 2013–20 is analyzed.The synoptic types affecting DHP events are identified with the Lamb–Jenkinson circulation classification method.The meteorological and chemical causes of DHP events controlled by the main synoptic types are further investigated.Results show that DHP events(1655 in total for China during 2013–20)mainly occur over the North China Plain,Yangtze River Delta,Pearl River Delta,Sichuan Basin,and Central China.The occurrence frequency increases by 5.1%during 2013–15,and then decreases by 56.1%during 2015–20.The main circulation types of DHP events are“cyclone”and“anticyclone”,accounting for over 40%of all DHP events over five main polluted regions in China,followed by southerly or easterly flat airflow types,like“southeast”,“southwest”,and“east”.Compared with non-DHP events,DHP events are characterized by static or weak wind,high temperature(20.9℃ versus 23.1℃)and low humidity(70.0%versus 64.9%).The diurnal cycles of meteorological conditions cause PM_(2.5)(0300–1200 LST,Local Standard Time=UTC+8 hours)and O_(3)(1500–2100 LST)to exceed the national standards at different periods of the DHP day.Three pollutant conversion indices further indicate the rapid secondary conversions during DHP events,and thus the concentrations of NO_(2),SO_(2) and volatile organic compounds decrease by 13.1%,4.7%and 4.4%,respectively.The results of this study can be informative for future decisions on the management of DHP events.
文摘In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.
基金This work is supported by the National Natural Science Foundation of China (Grant Nos. 60336010 & 90401001)973 Program (Grant No. TG 2000036603)the Student Innovation Program of CAS (No. 1731000500010).
文摘It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.
基金Supported by the National Program on Key Research and Development Project under Grant No 2016YFA0400801the National Natural Science Foundation of China under Grant Nos 11173034,11673023 and 11364007+2 种基金the Fundamental Research Funds for the Central Universitythe Key Support Disciplines of Theoretical Physics of Guizhou Province Education Bureau under Grant No ZDXK[2015]38the Youth Talents Project of Science and Technology in Education Bureau of Guizhou Province under Grant No KY[2017]204
文摘The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double pulsar system. Accepting the spin-down age as a rough estimate(or often an upper limit) of the true age of the neutron star, we also impose the restrictions on the radius of this system. We calculate the radius of the recycled pulsar PSR J0737-3039 A ranges approximately from 8.14 to 25.74 km, and the composition of its neutron star nuclear matters is discussed in the mass-radius diagram.
基金Project (51004056) supported by the National Natural Science Foundation of ChinaProject (KKZ6201152009) supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials, ChinaProjects (2011239, 2011240) supported by Analysis and Measurement Research Fund of Kunming University of Science and Technology,China
文摘In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.
基金financial support from National Key Research&Development Project(2016YFE0126900)the National Natural Science Foundation of China(51672095)+2 种基金Hubei Province(2018AAA057)the EPSRC Capital for Great Technologies Grant EP/L017008/1the China Scholarship Council for funding(201806160178)。
文摘In this study,we successfully synthesized double perovskite-type oxide NdBa0.5Ca0.5Co1.5Fe0.5O5+δ(NBCCF)using a conventional wet chemical method as the oxygen electrode for reversible solid oxide electrochemical cells(RSOCs).The polarization resistance(Rp)of the composite electrode NBCCFGd0.1Ce0.9O2(GDC)is only 0.079Ωcm^2 at 800℃under air.The single cell based on NBCCF-GDC electrode displays a peak power density of 0.941 W/cm^2 in fuel cell mode and a low Rp value of 0.134Ωcm^2.In electrolysis cell mode,the cell displays an outstanding oxygen evolution reaction(OER)activity and shows current density as high as 0.92 A/cm^2 with 50 vol%AH(Absolute Humidity)at 800℃and applied voltage of 1.3 V.Most importantly,the cell exhibits admirable durability of 60 h both in electrolysis mode and fuel cell mode with distinguished reversibility.All these results suggest that NBCCF is a promising candidate electrode for RSOC.
文摘In this paper, the tensile properties of the MWK structures produced with different basic stitches for composite reinforcement were experimentally studied. The results show that the MWK structures with the double loop pillar stitches have better mechanical properties.
基金Projects(01306016, 01307148) supported by Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University), ChinaProject(09497) supported by the Young Science Foundation of Jiangxi Provincial Education Office, ChinaProject(50765005) supported by the National Natural Science Foundation of China
文摘The hybrid SiC foam-SiC particles/Al double interpenetrating composites to be used as the brake materials of high speed train were fabricated by squeeze casting technique. The influence of the type of matrix on the mechanical properties and the fracture mechanism of the hybrid composites was investigated. The interface bond in the hybrid composites is good for the composites have the unique double interpenetrating structure. The ductile matrix resists the propagation of the microcracks in the struts. During the microcrack propagation process, the energy absorption and the fracture surface area are increased, which increases the ductility of the hybrid composites. The compressive strength of the hybrid composite reinforced by the SiC with the total volume fraction of 53% is 660 MPa, which is higher than that of traditional composite reinforced by single SiC particles.