In this paper, the nonlinear analysis of stability of functionally graded ma- terial (FGM) sandwich doubly curved shallow shells is studied under thermo-mechanical loads with material properties obeying the general ...In this paper, the nonlinear analysis of stability of functionally graded ma- terial (FGM) sandwich doubly curved shallow shells is studied under thermo-mechanical loads with material properties obeying the general sigmoid law and power law of four ma- terial models. Shells are reinforced by the FGM stiffeners and rest on elastic foundations. Theoretical formulations are derived by the third-order shear deformation theory (TSDT) with the von Karman-type nonlinearity taking into account the initial geometrical im- perfection and smeared stiffener technique. The explicit expressions for determining the critical buckling load and the post-buckling mechanical and thermal load-deflection curves are obtained by the Galerkin method. Two iterative algorithms are presented. The effects of the stiffeners, the thermal element, the distribution law of material, the initial imper- fection, the foundation, and the geometrical parameters on buckling and post-buckling of shells are investigated.展开更多
基金Project supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘In this paper, the nonlinear analysis of stability of functionally graded ma- terial (FGM) sandwich doubly curved shallow shells is studied under thermo-mechanical loads with material properties obeying the general sigmoid law and power law of four ma- terial models. Shells are reinforced by the FGM stiffeners and rest on elastic foundations. Theoretical formulations are derived by the third-order shear deformation theory (TSDT) with the von Karman-type nonlinearity taking into account the initial geometrical im- perfection and smeared stiffener technique. The explicit expressions for determining the critical buckling load and the post-buckling mechanical and thermal load-deflection curves are obtained by the Galerkin method. Two iterative algorithms are presented. The effects of the stiffeners, the thermal element, the distribution law of material, the initial imper- fection, the foundation, and the geometrical parameters on buckling and post-buckling of shells are investigated.