In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
A class of quasilinear elliptic variational inequalities with double degenerate is discussed in this paper. We extend the Keldys-Fichera boundary value problem and the first boundary problem of degenerate elliptic equ...A class of quasilinear elliptic variational inequalities with double degenerate is discussed in this paper. We extend the Keldys-Fichera boundary value problem and the first boundary problem of degenerate elliptic equation to the variationalinequalities. We establish the existence and uniqueness of the weak solution of ocrresspending problem under nonstandard growth conditions.展开更多
We deal with the existence of weak solutions of double degenerate quasilinear parabolic inequalities with a Signorini-Dirichlet-Neumann type mixed boundary condition, which may degenerate in certain subset of the boun...We deal with the existence of weak solutions of double degenerate quasilinear parabolic inequalities with a Signorini-Dirichlet-Neumann type mixed boundary condition, which may degenerate in certain subset of the boundary or on a segment in the interior of the domain and in time. The main tools in our study are the maximM monotone property of the derivative operator with zero-initial valued conditions and the theory of pseudomonotone perturbations of maximal monotone mappings.展开更多
We deal with the existence of periodic solutions for doubly degenerate quasilinear parabolic equations of higher order,which can degenerate,on a part of the boundary,on a segment in the interior of the domain and in t...We deal with the existence of periodic solutions for doubly degenerate quasilinear parabolic equations of higher order,which can degenerate,on a part of the boundary,on a segment in the interior of the domain and in time.展开更多
基金Supported by the NNSF of China(10441002)Supported by NNSF of Henan Province(200510466011)
文摘In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
文摘A class of quasilinear elliptic variational inequalities with double degenerate is discussed in this paper. We extend the Keldys-Fichera boundary value problem and the first boundary problem of degenerate elliptic equation to the variationalinequalities. We establish the existence and uniqueness of the weak solution of ocrresspending problem under nonstandard growth conditions.
基金Supported by the National Natural Science Foundation of China(Grant No.11271087,No.61263006)Guangxi Scientific Experimental(China-ASEAN Research)Centre No.20120116
文摘We deal with the existence of weak solutions of double degenerate quasilinear parabolic inequalities with a Signorini-Dirichlet-Neumann type mixed boundary condition, which may degenerate in certain subset of the boundary or on a segment in the interior of the domain and in time. The main tools in our study are the maximM monotone property of the derivative operator with zero-initial valued conditions and the theory of pseudomonotone perturbations of maximal monotone mappings.
基金Project supported partially by NNSF of China Grant No.10171008NSF of Hunan Province Grant No.03JJY3003
文摘We deal with the existence of periodic solutions for doubly degenerate quasilinear parabolic equations of higher order,which can degenerate,on a part of the boundary,on a segment in the interior of the domain and in time.