The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-norm...The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-normed spaces to be statistically Cauchy sequence in 2-normed spaces.展开更多
In 2000, Kostyrko, Salat, and Wilczynski introduced and studied the concept of I-convergence of sequences in metric spaces where I is an ideal. The concept of I-convergence has a wide application in the field of Numbe...In 2000, Kostyrko, Salat, and Wilczynski introduced and studied the concept of I-convergence of sequences in metric spaces where I is an ideal. The concept of I-convergence has a wide application in the field of Number Theory, trigonometric series, summability theory, probability theory, optimization and approximation theory. In this article we introduce the double sequence spaces and ,for a modulus function f and study some of the properties of these spaces.展开更多
The notion of ideal convergence is a generalization of statistical convecgence which has been intensively investigated in last few years. For an admissible ideal ∮ C N × N, the aim of the present paper is to int...The notion of ideal convergence is a generalization of statistical convecgence which has been intensively investigated in last few years. For an admissible ideal ∮ C N × N, the aim of the present paper is to introduce the concepts of ∮-convergence and :∮*-convergence for double sequences on probabilistic normed spaces (PN spaces for short). We give some relations related to these notions and find condition on the ideal ∮ for which both the notions coincide. We also define ∮-Cauchy and :∮*- Cauchy double sequences on PN spaces and show that ∮-convergent double sequences are ∮-Cauchy on these spaces. We establish example which shows that our method of convergence for double sequences on PN spaces is more general.展开更多
文摘The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-normed spaces to be statistically Cauchy sequence in 2-normed spaces.
文摘In 2000, Kostyrko, Salat, and Wilczynski introduced and studied the concept of I-convergence of sequences in metric spaces where I is an ideal. The concept of I-convergence has a wide application in the field of Number Theory, trigonometric series, summability theory, probability theory, optimization and approximation theory. In this article we introduce the double sequence spaces and ,for a modulus function f and study some of the properties of these spaces.
文摘The notion of ideal convergence is a generalization of statistical convecgence which has been intensively investigated in last few years. For an admissible ideal ∮ C N × N, the aim of the present paper is to introduce the concepts of ∮-convergence and :∮*-convergence for double sequences on probabilistic normed spaces (PN spaces for short). We give some relations related to these notions and find condition on the ideal ∮ for which both the notions coincide. We also define ∮-Cauchy and :∮*- Cauchy double sequences on PN spaces and show that ∮-convergent double sequences are ∮-Cauchy on these spaces. We establish example which shows that our method of convergence for double sequences on PN spaces is more general.