The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is pe...The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.展开更多
Based on dual-differential comparing principle, an experimental system of optical fiber F-P interferometric micro-displacement measurement is introduced. It is capable of achieving the absolute displacement measuremen...Based on dual-differential comparing principle, an experimental system of optical fiber F-P interferometric micro-displacement measurement is introduced. It is capable of achieving the absolute displacement measurement, and wavelet transforms is adopted as theory fundament to extract the optical F-P interferometric characteristic signal and remove the noise, so its resolution can reach 0. 01 μm in the dynamic range of 0~ 1 mm.展开更多
The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP senso...The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP sensors after irradiation was stable,while the temperature sensitivity of FBG sensors was unstable,and both wavelengths displayed a shift.These findings offer the possibility for the application of FP pressure sensors in the gamma radiation environments,and FBG sensors require further research to be suitable for application in the nuclear radiation environments.展开更多
We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (...We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/με. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.展开更多
This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot ...This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.展开更多
The use of a phase mask with 536 nm uniform pitch allowed the fabrication of a fiber Bragg grating for use at a Bragg wavelength of 785 nm. Reflection and transmission features at 1552 nm, twice the Bragg wavelength, ...The use of a phase mask with 536 nm uniform pitch allowed the fabrication of a fiber Bragg grating for use at a Bragg wavelength of 785 nm. Reflection and transmission features at 1552 nm, twice the Bragg wavelength, associated with the phase mask periodicity were observed. However, when phase mask orders other than +1 were absent during fabrication the features at 1552 nm were not evident.展开更多
Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sens...Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique,diaphragm-based EFPI sensors,and white light interference technology have been reviewed.Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced.Signal demodulation algorithms based on the cross correlation and mean square error(MSE)estimation have been proposed for retrieving the cavity length of EFPI.Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out.For downhole monitoring,an EFPI and a fiber Bragg grating(FBG)cascade multiplexing fiber-optic sensor system has been developed,which can operate in temperature 300℃with a good long-term stability and extremely low temperature cross-sensitivity.Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection.Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.展开更多
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity le...A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/℃ to 0.89 pm/℃, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.展开更多
Recent developments in spectral white-light interferometry(WLI)are reviewed.Firstly,the techniques for obtaining optical spectrum are introduced.Secondly,some novel measurement techniques are reviewed,including the im...Recent developments in spectral white-light interferometry(WLI)are reviewed.Firstly,the techniques for obtaining optical spectrum are introduced.Secondly,some novel measurement techniques are reviewed,including the improved peak-to-peak WLI,improved wavelength-tracking WLI,Fourier transform WLI,and 3×3 coupler based WLI.Furthermore,a hybrid measurement for the intensity-type sensors,interferometric sensors,and fiber Bragg grating sensors is achieved.It is shown that these developments have assisted in the progress of WLI.展开更多
文摘The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.
文摘Based on dual-differential comparing principle, an experimental system of optical fiber F-P interferometric micro-displacement measurement is introduced. It is capable of achieving the absolute displacement measurement, and wavelet transforms is adopted as theory fundament to extract the optical F-P interferometric characteristic signal and remove the noise, so its resolution can reach 0. 01 μm in the dynamic range of 0~ 1 mm.
基金This work was funded by the National Science Foundation of China(NCSF)(Grant No.51875091)the Study and Application of Full-model Impact Dynamic Fretting Damage Test System in the Extreme Environment(Grant No.51627806)+3 种基金Research on Application of Optical Fiber Sensing in Nuclear Power(Grant No.180046)Optical Fiber Sensing and Processing Prototype for Nuclear Field Key Parameter Measurement(Grant No.191091)Data Acquisition and Post-processing Software Development for Integrated Fiber Optic Sensors(Grant No.190167)the State 111 Project(Grant No.B14039).
文摘The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP sensors after irradiation was stable,while the temperature sensitivity of FBG sensors was unstable,and both wavelengths displayed a shift.These findings offer the possibility for the application of FP pressure sensors in the gamma radiation environments,and FBG sensors require further research to be suitable for application in the nuclear radiation environments.
基金This work is supported by the Nature Science Foundation Project of CQ CSTC under Grant No.cstc2012jjA4007. Assistances and good suggestions of Associate Prof. M. Deng in Chongqing University are appreciated.
文摘We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/με. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.
文摘This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.
基金supported by the Australian Research Council under Grant No. DP0773999.
文摘The use of a phase mask with 536 nm uniform pitch allowed the fabrication of a fiber Bragg grating for use at a Bragg wavelength of 785 nm. Reflection and transmission features at 1552 nm, twice the Bragg wavelength, associated with the phase mask periodicity were observed. However, when phase mask orders other than +1 were absent during fabrication the features at 1552 nm were not evident.
文摘Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer(EFPI)have been extensively applied in various industrial and biomedical fields.In this paper,some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique,diaphragm-based EFPI sensors,and white light interference technology have been reviewed.Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced.Signal demodulation algorithms based on the cross correlation and mean square error(MSE)estimation have been proposed for retrieving the cavity length of EFPI.Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out.For downhole monitoring,an EFPI and a fiber Bragg grating(FBG)cascade multiplexing fiber-optic sensor system has been developed,which can operate in temperature 300℃with a good long-term stability and extremely low temperature cross-sensitivity.Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection.Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.
文摘A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/℃ to 0.89 pm/℃, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.
基金This work was supported by the National Natural Scientific Foundation of China(51075037)the Program for New Century Excellent Talents(NCET)at the University of China and Chinese 863 Project(2008AA04Z406).
文摘Recent developments in spectral white-light interferometry(WLI)are reviewed.Firstly,the techniques for obtaining optical spectrum are introduced.Secondly,some novel measurement techniques are reviewed,including the improved peak-to-peak WLI,improved wavelength-tracking WLI,Fourier transform WLI,and 3×3 coupler based WLI.Furthermore,a hybrid measurement for the intensity-type sensors,interferometric sensors,and fiber Bragg grating sensors is achieved.It is shown that these developments have assisted in the progress of WLI.