The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tu...The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.展开更多
In order to improve the accuracy of damage region division and eliminate the interference of damage adjacent region,the airframe damage region division method based on the structure tensor dynamic operator is proposed...In order to improve the accuracy of damage region division and eliminate the interference of damage adjacent region,the airframe damage region division method based on the structure tensor dynamic operator is proposed in this paper.The structure tensor feature space is established to represent the local features of damage images.It makes different damage images have the same feature distribution,and transform varied damage region division into consistent process of feature space division.On this basis,the structure tensor dynamic operator generation method is designed.It integrates with bacteria foraging optimization algorithm improved by defining double fitness function and chemotaxis rules,in order to calculate the parameters of dynamic operator generation method and realize the structure tensor feature space division.And then the airframe damage region division is realized.The experimental results on different airframe structure damage images show that compared with traditional threshold division method,the proposed method can improve the division quality.The interference of damage adjacent region is eliminated.The information loss caused by over-segmentation is avoided.And it is efficient in operation,and consistent in process.It also has the applicability to different types of structural damage.展开更多
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202),the National Natural Science Foundation of China(61174118)+2 种基金the National High-Tech Research and Development Program of China(2012AA040307)Shanghai Key Technologies R&D program(12dz1125100)Shanghai Leading Academic Discipline Project(B504)
文摘The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.
基金the Aviation Science Foundation of China(No.20151067003)。
文摘In order to improve the accuracy of damage region division and eliminate the interference of damage adjacent region,the airframe damage region division method based on the structure tensor dynamic operator is proposed in this paper.The structure tensor feature space is established to represent the local features of damage images.It makes different damage images have the same feature distribution,and transform varied damage region division into consistent process of feature space division.On this basis,the structure tensor dynamic operator generation method is designed.It integrates with bacteria foraging optimization algorithm improved by defining double fitness function and chemotaxis rules,in order to calculate the parameters of dynamic operator generation method and realize the structure tensor feature space division.And then the airframe damage region division is realized.The experimental results on different airframe structure damage images show that compared with traditional threshold division method,the proposed method can improve the division quality.The interference of damage adjacent region is eliminated.The information loss caused by over-segmentation is avoided.And it is efficient in operation,and consistent in process.It also has the applicability to different types of structural damage.