期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Platinum and Iridium Coatings Obtained by Double Glow Plasma Technology 被引量:1
1
作者 WU Wangping CHEN Zhaofeng +2 位作者 CHEN Zhou CONG Xiangna QIU Jinlian 《贵金属》 CAS CSCD 北大核心 2012年第A01期146-153,共8页
Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates. The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectrosc... Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates. The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectroscopy. The microstructure and morphology of the coatings were observed by scanning electron microscopy. The hardness and elastic modulus of the coatings were estimated by nanoindentation. The measurements of adhesive forces of the coatings were performed with scratch tester. The results indicated that the Pt and Ir coatings displayed the preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrates. The interface between the Pt coating and substrate exhibited no evidence of delamination. The Ir coating was composed of irregular columnar grains with many nanovoids at the interface between the coating and substrate. The mean values of hardness for Pt and Ir coatings were 0.9 GPa and 9 GPa, respectively. The elastic modulus of Pt and Ir coatings were 178 GPa and 339 GPa, respectively. The adhesive forces of the Pt and Ir coatings were about 66.4 N and 55 N, respectively. The Pt and Ir coatings adhered well to the Ti alloy substrates. 展开更多
关键词 noble metal COATING PLATINUM IRIDIUM double glow plasma
下载PDF
Double Glow Plasma Hydrogen-free Carburizing on Commercial Purity Titanium 被引量:1
2
作者 张高会 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第4期80-82,共3页
A carburized layer with special physical and chemical properties was formed on the surface of commercial purity titanium by a double glow plasma hydrogen-free carburizing technique,High-purity netlike solid graphite w... A carburized layer with special physical and chemical properties was formed on the surface of commercial purity titanium by a double glow plasma hydrogen-free carburizing technique,High-purity netlike solid graphite was used as a raw material and commercial purity titanium was used as the substrate material.Argon gas was used as the working gas.The carburized layer can be obviously observed under a microscope.X-ray diffraction indicates that TiC phase with higher hardness and dissociate state carbon phase was formed in the carburized layer.The glow discharge spectrum(GDS) analysis shows that the carbon concentration distributes grodiently along the depth of carburized layer.The surface hardness of the substrate increases obviously.The hardness distributes gradiently from the surface to inner of carburized layer.The friction coefficient reduces by more than 1/2,the ratio wear rate decreases by above three orders of magnitude.The wear resistance of the substrate material is improved-consumedly. 展开更多
关键词 TITANIUM FRICTION the double glow technique hydrogen-free carburizing
下载PDF
Study of Titanizing the Surface of Copper Substrates by the Double Glow Discharge Plasma Surface Alloying Technique 被引量:1
3
作者 张跃飞 陈飞 +2 位作者 吕俊霞 苏永安 徐重 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第4期2947-2949,共3页
This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the mi... This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120 μm and the surface titanium concentration gradually decreases from ω (Ti) = 87% to ω (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV-800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer. 展开更多
关键词 double glow discharge plasma titanizing COPPER
下载PDF
Influence of the Electrode Distance on Microstructure and Corrosion Resistance of Ni-Cr Alloyed Layers Deposited by Double Glow Plasma Surface Metallurgy
4
作者 黄俊 YANG Siyu +3 位作者 CUI Shiyu XU Jilin ZHANG Jianping LUO Junming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第6期1204-1215,共12页
Ni-Cr alloyed layers were synthesized on the surface of Q235 mild steel by double-glow plasma surface metallurgy with different electrode distance.The microstructure and phases of the alloyed layer were characterized ... Ni-Cr alloyed layers were synthesized on the surface of Q235 mild steel by double-glow plasma surface metallurgy with different electrode distance.The microstructure and phases of the alloyed layer were characterized by scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),and X-ray diffraction(XRD).The corrosion behavior of the Ni-Cr alloyed layers both in 3.5%NaCl and 0.5 M H_(2)SO_(4) solution were systematically investigated by open-circuit potential(OCP),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).The obtained results reveal that the Ni-Cr alloyed layer consists of a deposited layer and an inter-diffusion layer.With increasing the electrode distance,the relative thickness,microstructure and phase composition of the Ni-Cr alloyed layers vary greatly.Polarization data show the Ni-Cr alloyed layer with the electrode distance of 15 mm has highest corrosion resistance and lowest corrosion rate,while EIS results reveal the same trend.The highest protective efficiency in 3.5%NaCl and 0.5 M H_(2)SO_(4) solution are 99.23%and 99.92%,respectively,obtained for the Ni-Cr alloyed layer with 15 mm electrode distance.When the electrode distance is too large,a thin and porosity Ni-Cr alloyed layer,caused by low plasma density and Kirkendall effect,will be obtained,and will decrease the protective efficiency in corrosive medium. 展开更多
关键词 double glow plasma surface metallurgy Ni-Cr alloyed layer electrode distance corrosion behavior electrochemical impedance spectroscopy
下载PDF
Double Glow Plasma Surface Alloying Process Modeling Using Artificial Neural Networks
5
作者 JiangXU XishanXIE ZhongXU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期404-406,共3页
A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) ar... A model is developed for predicting the correlation between processing parameters and the technical target of double glow by applying artificial neural network (ANN). The input parameters of the neural network (NN) are source voltage, workplace voltage, working pressure and distance between source electrode and workpiece. The output of the NN model is three important technical targets, namely the gross element content, the thickness of surface alloying layer and the absorption rate (the ratio of the mass loss of source materials to the increasing mass of workpiece) in the processing of double glow plasma surface alloying. The processing parameters and technical target are then used as a training set for an artificial neural network. The model is based on multiplayer feedforward neural network. A very good performance of the neural network is achieved and the calculated results are in good agreement with the experimental ones. 展开更多
关键词 double glow Artificial neural network Multi-element alloying
下载PDF
XPS study of the corrosion resisting composite alloying layer obtained by double glow plasma with the brush plating Ni interlayer
6
作者 JiangXu XishanXie +1 位作者 ZhongXu WenjinLiu 《Journal of University of Science and Technology Beijing》 CSCD 2004年第2期151-156,共6页
The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl sol... The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl solution, the corrosion resistance of thecomposite alloying layer and single alloying layer is determined. The experimental results showthat the corrosion resistance of the composite alloying layer is obviously better than that of thesingle alloying layer. The structure and composition of passive films formed on the two kinds ofalloyed layers after electrochemical tests in 3.5 percent NaCl solution have been studied usingX-ray photoelectron spectroscopy (XPS). It is concluded that the double glow plasma surface alloyingof low carbon steel with the electric brush plating Ni interlayer is an appropriate technique toenhance the corrosion resistance compared with the single double glow surface alloying. 展开更多
关键词 double glow composite alloying XPS electric brush plating
下载PDF
Oxidation Resistance Coatings of Ir-Zr and Ir by Double Glow Plasma 被引量:4
7
作者 Zhaofeng Chen Wangping Wu Xiangna Cong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第3期268-274,共7页
Oxidation resistance coatings of Ir-40 at.% Zr and Ir were produced onto Mo substrates by double glow plasma technology. The oxidation resistances of the coatings were evaluated at high temperature. Ir-Zr coating cons... Oxidation resistance coatings of Ir-40 at.% Zr and Ir were produced onto Mo substrates by double glow plasma technology. The oxidation resistances of the coatings were evaluated at high temperature. Ir-Zr coating consisted of two layers: the primary layer close to the substrate was composed of dense columnar grains and the second layer was composed of dense grains of nanometric size. The mass gain of Ir coating above 800℃ was about 1.35% due to the formation of solid IrO2. The mass loss of Ir coating was about 5.3% due to the formation of gaseous oxide IrO3 when being held at 1227 ℃ for 30 min. The substrate was protected more effectively by multilayer than monolayer coating of Ir in oxidizing environment. The Ir-Zr coating was well bonded to the substrate after oxidation at 800℃. After oxidation at 1000℃, the Ir-Zr coating was poorly bonded to the substrate. The oxidation resistance of Ir-Zr coating was poor due to high content of Zr. 展开更多
关键词 COATING Oxidation resistance double glow discharge
原文传递
Growth mechanism of polycrystalline Ir coating by double glow plasma technology 被引量:3
8
作者 Wangping WU Zhaofeng CHEN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2012年第6期469-479,共11页
Pure Ir coating was produced by double nism of the Ir coating was investigated. glow plasma technology. Growth mecha- The Ir coating was composed of irregular compacted columnar grains with lots of nanovoids appeared ... Pure Ir coating was produced by double nism of the Ir coating was investigated. glow plasma technology. Growth mecha- The Ir coating was composed of irregular compacted columnar grains with lots of nanovoids appeared on the interface between the coating and the substrate. The Ir coating was polycrystalline with a preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrate. The formation mechanism of the Ir coating depended on kinetic adsorp- tion and diffusion process with nucleation, coalescence and thickness growth. At the beginning of the deposition process, the growth mode of the coating was mainly con- trolled by the nucleation rate. Due to the low substrate temperature resulting in low mobility of the deposited atoms, some micropores and nanoviods were present at the interface. With the deposition process, the substrate temperature was increased and then kept steady. The growth of the coating was governed by the growth rate. The high substrate temperature supported enough energy to surface mobilitv of adatoms. 展开更多
关键词 Growth mechanism COATING IRIDIUM double glow plasma
原文传递
Corrosion property of copperized layer on Zr formed by double glow plasma surface alloying technique
9
作者 Jian-Qing Wang Hong-Bo Yang +3 位作者 Bing Zhang Han-Long Lin Bao Chen Qin Jing 《Rare Metals》 SCIE EI CAS CSCD 2016年第9期711-717,共7页
Zr and its alloys have excellent mechanical properties as new structural material,but in specific application environment,its corrosion resistance still needs to be further explored.In this work,double glow plasma sur... Zr and its alloys have excellent mechanical properties as new structural material,but in specific application environment,its corrosion resistance still needs to be further explored.In this work,double glow plasma surface alloying technique was used for copperizing on pure Zr surface.Besides,X-ray diffraction(XRD),scanning electron microscope(SEM) and energy dispersion spectrum(EDS) were employed to characterize the samples.Furthermore,research was also conducted on the polarization curve of the samples in different solutions.Copperizing on surface can improve corrosion resistance of pure Zr in 3.5 % Na Cl and 0.5 moláL-1Na OH solutions.Especially in 0.5 moláL-1Na OH solution,the corrosion resistance can achieve significant improvement.However,copperizing has no influence on the improvement of corrosion resistance of pure Zr in 0.5 moláL-1H2SO4 solution.The results may provide new insight into way for improving the corrosion property of zirconium alloys. 展开更多
关键词 Zr double glow plasma surface alloying technique Copperizing Polarization curve Corrosion resistance
原文传递
Tribological Properties of Dimpled Surface Alloying Layer on Carbon Steel 被引量:2
10
作者 万轶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期218-222,共5页
The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and... The effect of surface structure and coating on tribological properties of 45^# carbon steel disc was analyzed. A Nd:YAG laser was used to generate rnicrodirnples on steel surfaces. Dimples with diameter of 150 rn and depth of 50 rn were distributed in an orbicular array on disc surface. Then the alloying element Mo was sputtered to 45# carbon steel disc surface by means of double glow plasma technology. Diffusion Mo alloying layer with 30min thickness and high hardness up to 0.025 was formed on the disc surface. Tribological experiments of three types samples (smooth, texturing and texturing+alloying) were conducted with a pin-on-disc tribometer. It is found that the dimpled-samples are most effective for reducing friction in comparison with smooth steel surthces, improving the lubricating state from boundary to hydrodynamic region. 展开更多
关键词 laser surface texturing double glow plasma surface alloying technology carbon steel tribological performance lubricating state
下载PDF
Improving Corrosion Resistance of Q235 Steel by Ni-Cr Alloyed Layer 被引量:1
11
作者 黄俊 张平则 +1 位作者 WU Hongyan BI Qiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期33-37,共5页
Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate. The composition and microstructure of alloyed layer was analyzed by SE... Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate. The composition and microstructure of alloyed layer was analyzed by SEM and XRD. Potentiodynamic polarization and electrochemical impedance spectroscopy was applied to evaluate the corrosion resistance of the alloyed layer. The results showed working pressure had a great effect on structure of Ni-Cr alloyed layer, and the dense and smooth alloyed layer was prepared at 50 Pa working pressure. Compared with substrate, Ni-Cr alloyed layer exhibited higher corrosion potential, lower corrosion current density and larger charge transfer resistance, which indicated that Ni-Cr alloyed layer significantly modified the corrosion resistance of Q235 steel. 展开更多
关键词 double glow plasma surface metallurgy Ni-Cr alloyed layer potentiodynamic polarization electrochemical impedance spectroscopy corrosion resistance
下载PDF
A Study of Multi-Permeating TiN/Ti Alloying Layer Using Plasma Surface Alloying Technology
12
作者 刘燕萍 徐晋勇 +6 位作者 隗小云 王建忠 高原 徐重 张广秋 葛袁静 张跃飞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期213-216,共4页
TiN/Ti multi-permeating alloying layer has been formed on the low carbon steel by means of the double glow-discharge plasma surface alloying technique and hollow-cathode effect. The alloying layer was detected by axio... TiN/Ti multi-permeating alloying layer has been formed on the low carbon steel by means of the double glow-discharge plasma surface alloying technique and hollow-cathode effect. The alloying layer was detected by axiovert 25 CA optical microscope with computer analyzing software (LEC), GDA-2 glow discharge spectroscopy (GDS), X-ray diffraction (XRD) and galvanochemical method. The results showed that the thickness of TiN/Ti multi-permeating alloying layer was about 10μm, the content of Ti on the surface was up to 63.48 wt% and the content of N was up to 12.46 wt%. The atom Ti and N concentrations changed gradually across the depth of the alloying layer and the preferred orientation of TiN/Ti alloying layer was crystal surface (200). The multi-permeating alloying layer and substrate were combined through metallurgy. The surface appearances of the multi-permeating alloying layer were uniform and of a compact cellular structure. The hardness of the surface was about 1600-3000 HV0.1. The corrosion resistance of the permeating TiN/Ti alloying layer in 0.5 mol/L H2SO4 solution was greatly increased and the corrosion rate was only 0.3082 g/m^2. h. 展开更多
关键词 plasma surface technology TiN multi-layer double glow discharge process diffusion structure corrosion resistance
下载PDF
Surface Metallurgy of Nickle Base Superalloy
13
作者 Xu Zhang Zhongmin Yang +3 位作者 Jianxin Dong Xishan Xie Yuan Gao Zhong Xu (Material Science and Engineering school, University of Science and Technology Beijing, Beijing 100083, China)(Institute of Surface Engineering, Taiyuan University of Technology, Taiyua 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第1期47-49,共3页
The Double Glow Plasma Surface Alloying Technique, the Xu-Tee Process, is a new method to produce high quality alloying layer on the surface of less expensive materials. By using thes technique, the surface alloying ... The Double Glow Plasma Surface Alloying Technique, the Xu-Tee Process, is a new method to produce high quality alloying layer on the surface of less expensive materials. By using thes technique, the surface alloying layer similar to superalloy Inconel 625 has been obtained on the surface of three kinds of melallic materials (low carbon steel, industrial pure iron, stainless steel Cr18Ni9). The results of the composition and microstructure analyzed by Scanning Electron Microscopy (SEM) and X-Ray Uffrachon (XRD) show that the alloying layer consistS of y matrix and several precipitates (Laves intermetallic phase and carbide etc.). The electrochemical corrosion results show that the surface alloying layer formed on the surface of stainless steel and industrial pure iron have better corrosion resistance than that of nickel base alloy inconel 625 and stainless steel Cr18Ni9 in 3.5%NaCl solution. The exper iments indicate that it is an effective way to obtain the gradient surface alloying layer on the surfaces of steels by using Double Glow Plasma Surface Alloying Technique. 展开更多
关键词 double glow nickel base alloy plasma surface alloying
下载PDF
Study on preparation,microstructure and luminescent properties of Er-ZrO_2 layer 被引量:1
14
作者 吴红艳 李胤 +2 位作者 王亚 张平则 饶伟峰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第9期958-962,共5页
To further explore the material early-warning application of the luminescent coating, we demonstrated a new method by preparing a mixture layer of metallic erbium and oxidized zirconium (Er-ZrO2 layer) using the dou... To further explore the material early-warning application of the luminescent coating, we demonstrated a new method by preparing a mixture layer of metallic erbium and oxidized zirconium (Er-ZrO2 layer) using the double glow plasma surface alloying technology with Zr and Er co-sputtering under oxygen plasma exposure. The microstructure, composition and luminescence proper-ties of the layers were characterized by scanning electron microscopy, X-ray diffraction, Raman and photoluminescence spectra. The dependence of the luminescence on the gradual concentration was studied. Results indicated that the contents of Zr, Er and O in the layer decreased gradually along the depth direction. The luminescence properties were concentration-dependent. X-ray dif-fraction analysis showed that the crystalline structure of ZrO2 layer transferred from a mixture phase of tetragonal and monoclinic to pure monoclinic phase with the Zr-Er co-sputtering. The Raman bands of the layers depended on its local ZrO2crystal struc-tures. Photoluminescence characteristics of Er-ZrO2layer revealed that the main emission bands were assigned to2H11/2→4I15/2and 4S3/2→4I15/2transition under the excitation at 325 nm. The fact suggested that the plasma surface alloying is an effective method to obtain luminescent layer. 展开更多
关键词 double glow plasma surface alloying luminescent properties Zr-Er co-sputtering Er-Zr02 layer rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部