期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
2D materials modulating layered double hydroxides for electrocatalytic water splitting 被引量:5
1
作者 Jinling Cheng Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1380-1398,共19页
Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered doubl... Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage. 展开更多
关键词 Layered double hydroxide 2D materials HYBRIDIZATION Synergistic effect Electrocatalytic water splitting
下载PDF
Effective multifunctional coatings with polyvinylpyrrolidone-enhanced ZIF-67 and zinc iron layered double hydroxide on microarc oxidation treated AZ31 magnesium alloy
2
作者 Mohammad Aadil Ananda Repycha Safira +2 位作者 Arash Fattah-alhosseini Mohammad Alkaseem Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3729-3743,共15页
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc... Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks. 展开更多
关键词 Hybrid material POLYVINYLPYRROLIDONE Metal-organic framework Layered double hydroxide Corrosion Photocatalytic degradation
下载PDF
Intercalation of PM-19 into and in vitro Release of Anti-tumor Drug from Layered Double Hydroxide 被引量:2
3
作者 WANGZhong-liang WANGEn-bo +4 位作者 TIANShang-yi XIAODong-rong GAOLei WANGLi XULin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第4期492-495,共4页
关键词 HYDROTALCITE Layered double hydroxide Controlled release PM-19 Hybrid material
下载PDF
The photoluminescence of Co-Al-layered double hydroxide 被引量:2
4
作者 Shuai Sun Wan Guo Hou 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第11期1371-1373,共3页
We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum... We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum shows a maximum peak near the wavelength 370 nm, the maximum emission peak appears at 430 um and the photoluminescence colour of the Co-Al-LDH sample is blue. This new optical property will be expected to extend the potential applications of LDHs in optical materials field. 展开更多
关键词 Layered double hydroxides PHOTOLUMINESCENCE Optical materials
下载PDF
LDH sealing for PEO coated friction stir welded AZ31/AA5754 materials
5
作者 Tatsiana Shulha Maria Serdechnova +4 位作者 Ting Wu Thymoty Naacke Gert Wiese Carsten Blawert Mikhail L.Zheludkevich 《Nano Materials Science》 EI CAS CSCD 2024年第4期428-442,共15页
The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previo... The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness. 展开更多
关键词 Layered double hydroxides(LDHs) Plasma electrolytic oxidation(PEO) Chelating agent Welded magnesium-aluminum materials Functional coatings
下载PDF
Synergistic interaction between redox-active electrolytes and functionalized carbon in increasing the performance of electric double-layer capacitors 被引量:1
6
作者 Guoxiang Wang Mingyuan Zhang +3 位作者 Hongfeng Xu Lu Lu Zuoyi Xiao Sa Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1219-1224,共6页
The increasing demand of high-performance supercapacitors has aroused great interest in developing specific capacitance and energy density. Active carbon (AC) has attracted much attention as a promising electrode ma... The increasing demand of high-performance supercapacitors has aroused great interest in developing specific capacitance and energy density. Active carbon (AC) has attracted much attention as a promising electrode material for electric double-layer capacitors (EDLCs). Here, a facile strategy has been employed to fabricate high-performance EDLCs using the surface-oxygen functionalized active carbon (FAC) as an electrode and 2 M KOH with K3Fe(CN)6 as an electrolyte. In this system, K3Fe(CN)6 was used as a redox additive to enhance the performance of EDLCs. A 38.5% increase in specific capacitance (207.7 F g-1) was achieved compared with the KOH electrolyte without adding K3Fe(CN)G (152.9 F g-1), due to the synergistic effects between oxygenic functional groups and redox electrolyte. These findings provide an alternative route to improve the performance of EDLCs, which are promising candidates for the broad applications of high-performance supercapacitors. 展开更多
关键词 Functional carbon material Redox-active electrolytes Electrical double layer Supercapacitnr
下载PDF
Chemical Modifications of Layered Double Hydroxides in the Supercapacitor 被引量:10
7
作者 Chuan Jing Biqin Dong Yuxin Zhang 《Energy & Environmental Materials》 2020年第3期346-379,共34页
Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and el... Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and electrode fabrication of layered double hydroxides,none summarize the effects of various modification methods on the structure and performance of layered double hydroxides in the supercapacitor.In a bid to fill this gap,in this review,we summarize the progress of modification methods such as exfoliation,intercalation,vacancy,doping,phase transformation,and composition regulation of layered double hydroxides in the field of the supercapacitor and put forward some opinions regarding the progress of research on the methods used in modifying the layered double hydroxides. 展开更多
关键词 2D materials chemical modifications layered double hydroxide SUPERCAPACITOR
下载PDF
Effect of N-doping-derived solvent adsorption on electrochemical double layer structure and performance of porous carbon
8
作者 Zhe-Fan Wang Cheng Tang +6 位作者 Qian Sun Ya-Lu Han Zhi-Jian Wang Lijing Xie Shou-Chun Zhang Fang-Yuan Su Cheng-Meng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期120-127,I0004,共9页
N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to... N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications. 展开更多
关键词 Carbon materials Electrochemical double layer Electrochemical quartz crystal microbalance In-situ X-ray photoelectron spectroscopy N-DOPING
下载PDF
Structural Evolvement of Heating Treatment of Mg/AI-LDH and Preparation of Mineral Mesoporous Materials 被引量:5
9
作者 CHEN Tianhu XU Huifang +3 位作者 WANG Yifeng QING Chengsong FAN Mingde CHEN Gang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第2期170-174,共5页
Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface are... Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface area changes of heat treated Mg/AI-LDH is evaluated by XRD, TEM and N2-BET analyses. The results indicate that the magnesium-aluminum LDH with carbonate as interlayer anion, periclase-like oxides was formed at temperatures of 400-800℃. Meanwhile, 2-3 nanometer mesoporous were formed during decomposition of LDH. However, the heat treated samples still preserve the morphology of the original LDH plates. Periclase-like formed from LDH heat treatment may re-hydrolyze and recover the structure of LDH. However, crystallinity of the recovered LDH is lower than that of the original LDH. This heat treatment will result in formation of (Mg, Al)-oxide nano-crystals and nanopores among the nano-crystals. When heating temperature exceeds 1000, the periclase-like (Mg, Al)-oxide is transformed into a composite with periclase (MgO) and spinel phases. The periclase can be re-hydrolyzed and dissolved in HCl solution. After acid treatment, the sample with a high surface area is composed of spinel nano-crystals and nanopores among them. Our results will provide a new and economic way to synthesize mesoporous materials through pathways of phase transformation of precursor materials with different composition. 展开更多
关键词 HYDROTALCITE layered double hydroxides mesoporous materials
下载PDF
Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions 被引量:2
10
作者 Xian Jian Shiyu Liu +5 位作者 Yuqi Gao Wei Tian Zhicheng Jiang Xiangyun Xiao Hui Tang Liangjun Yin 《Journal of Electrical Engineering》 2016年第2期75-87,共13页
Carbon-based materials are typical and commercially active electrode for supercapacitors due to their advantages such as low cost, good stability and easy availability. In the light of energy storage, supercapacitors ... Carbon-based materials are typical and commercially active electrode for supercapacitors due to their advantages such as low cost, good stability and easy availability. In the light of energy storage, supercapacitors mechanism is classified into EDLCs (electrochemical double layer capacitors) and pseudocapacitors. Multidimensional carbon nanomaterials (active carbon, carbon nanotube, graphene, etc.), carbon-based composite and corresponding electrolyte are the critical and important factor in the eyes of researcher. In this minireview, we will discuss the storage mechanism and summarize recent developed novel carbon and carbon-based materials in supercapacitors. The techniques to design the novel nanostructure and high performance electrodematerials that facilitate charge transfer to achieve high energy and power densities will also be discussed. 展开更多
关键词 Carbon materials storage mechanism electrochemical double layer capacitors pseudocapacitors.
下载PDF
Layered double hydroxide-derived Mg_(2)Ni/TiH_(1.5)composite catalysts for enhancing hydrogen storage performance of MgH_(2)
11
作者 Gang Huang Yao Lu +5 位作者 Xiaofang Liu Wukui Tang Xinyu Li Feng Wang Jianglan Shui Ronghai Yu 《Journal of Magnesium and Alloys》 2024年第12期4966-4975,共10页
Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of Mg H_(2)hydrogen storage material.Here,ultrathin Ni Ti-layered double hydroxide(Ni Ti-LDH)n... Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of Mg H_(2)hydrogen storage material.Here,ultrathin Ni Ti-layered double hydroxide(Ni Ti-LDH)nanosheets are used as precursors to prepare Mg_(2)Ni/TiH_(1.5)composite catalysts to improve the hydrogen storage properties of MgH_(2).The variation of Ni/Ti ratio in LDH plays an important role in regulating the composition,morphology and distribution of Mg_(2)Ni/Ti H_(1.5)catalysts,which significantly affect their synergistic catalytic effect.Mg_(2)Ni/TiH_(1.5)composite catalyst exhibits significantly improved catalytic performance compared with conventional Ni-,Ti-and Ni/Ti-based catalysts.The optimal Mg H_(2)/Mg_(2)Ni/TiH_(1.5)system shows a significantly reduced desorption temperature of 212℃which is 133℃lower than that of pure MgH_(2)(345℃),and can release 5.97 wt%hydrogen within 300s at 300℃.Further mechanism analysis reveals that the unique flaky morphology and suitable composition of Ni/Ti LDH can significantly enhance the synergistic effect of Mg_(2)Ni and TiH_(1.5),which promotes the fracture of the H–H and Mg-H bonds. 展开更多
关键词 Hydrogen storage materials MgH_(2) Layered double hydroxides Nanocatalysts
下载PDF
Salt freezing resistance improvement of cement-based materials incorporated with calcined layered double hydroxide
12
作者 Jinyang Huo Tonghuan Zhang +3 位作者 Zhenjun Wang Xiaofeng Wang Xin Ji Pei Wang 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2023年第3期427-440,共14页
Salt freezing damage has severe impacts on durability of cement-based materials(CBMs).Calcined layered double hydroxide(CLDH),as an efficient environmental-friendly adsorption material,can impart excellent salt freezi... Salt freezing damage has severe impacts on durability of cement-based materials(CBMs).Calcined layered double hydroxide(CLDH),as an efficient environmental-friendly adsorption material,can impart excellent salt freezing resistance to CBMs.In this work,salt freezing resistance improvement of CBMs incorporated with CLDH was experimentally evaluated by chloride binding capacity,mass loss rate,relative dynamic elastic modulus,setting time,compressive strength,and micro structure tests.Beside these,the salt freezing damage model was established to effectively express the quantitative relationship between influencing factors and evaluation indexes of the salt freezing resistance of CBMs.Results show that CLDH can reconstruct its original layered structure to form reconstructed layered double hydroxide(RLDH).RLDH combines with chloride ions to form RLDH-Cl recrystallization,which can improve chloride binding capacity and pore structures of CBMs to relieve the salt freezing damage.The salt freezing damage model indicates that the suitable CLDH content can evidently alleviate the salt freezing damage,which facilitates the quantitative analysis of the effect of CLDH on the salt freezing resistance of CBMs. 展开更多
关键词 Cement-based materials Calcined layered double hydroxide Salt freezing resistance Micro structure Salt freezing damage
原文传递
Synthesis of layered cathode materials Li[Co_x Ni_y Mn_(1-x-y)]O_2 from layered double hydroxide precursors
13
作者 Yanluo Lu Yang Zhao 《Particuology》 SCIE EI CAS CSCD 2010年第3期202-206,共5页
Cathode materials Li[CoxNiyMn1-x-y]O2 for lithium secondary batteries have been prepared by a new route using layered double hydroxides (LDHs) as a precursor. The resulting layered phase with the α- NaFe02 structur... Cathode materials Li[CoxNiyMn1-x-y]O2 for lithium secondary batteries have been prepared by a new route using layered double hydroxides (LDHs) as a precursor. The resulting layered phase with the α- NaFe02 structure crystallizes in the rhombohedral system, with space group R-3m having an interlayer spacing close to 0.47 nm. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation states of Co, Ni and Mn. The effects of varying the Co[Ni[Mn ratio on both the structure and electrochemical properties of Li[CoxNiyMn1-x-y]O2 have been investigated by X-ray diffraction and electrochemical tests. The products demonstrated a rather stable cycling behavior, with a reversible capacity of 118 mAh/g for the layered material with Co/Ni/Mn = 1/1/1. 展开更多
关键词 Layered Li[CoxNiyMn1-x-y]O2 Layered double hydroxides Precursor method Cathode materials
原文传递
Electric-double-layer-gated 2D transistors for bioinspired sensors and neuromorphic devices 被引量:2
14
作者 Xiangde Lin Yonghai Li +1 位作者 Yanqiang Lei Qijun Sun 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期238-259,共22页
Electric double layer(EDL)gating is a technique in which ions in an electrolyte modulate the charge transport in an electronic material through electrical field effects.A sub-nanogap capacitor is induced at the interf... Electric double layer(EDL)gating is a technique in which ions in an electrolyte modulate the charge transport in an electronic material through electrical field effects.A sub-nanogap capacitor is induced at the interface of electrolyte/semiconductor under the external electrical field and the capacitor has an ultrahigh capacitance density(~μF cm-2).Recently,EDL gating technique,as an interfacial gating,is widely used in two-dimensional(2D)crystals for various sophisti-cated materials characterization and device applications.This review introduces the EDL-gated transistors based on 2D materials and their applications in the field of bioinspired optoelectronic detection,sen-sing,logic circuits,and neuromorphic computation. 展开更多
关键词 Electrical double layer transistors 2D materials SENSORS applications
原文传递
Structure Engineering of Layered Double Hydroxides(LDHs)for Heterogeneous Catalysis
15
作者 GAO Zhexi MA Haoran +3 位作者 WANG Qian LI Dianqing FENG Junting DUAN Xue 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第4期590-610,共21页
Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-t... Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective. 展开更多
关键词 Layered double hydroxide(LDH)material Heterogeneous catalysis Structure engineering
原文传递
Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage 被引量:5
16
作者 Hongwei Zhang Liang Zhou +2 位作者 Xiaodan Huang Hao Song Chengzhong Yu 《Nano Research》 SCIE EI CAS CSCD 2016年第12期3725-3734,共10页
Selenium sulfide/double-layered hollow carbon sphere (SeS2/DLHC) composites have been designed as high-performance cathode materials for novel Li-SeS2 batteries. In the constructed composite, SeS2 is predominantly e... Selenium sulfide/double-layered hollow carbon sphere (SeS2/DLHC) composites have been designed as high-performance cathode materials for novel Li-SeS2 batteries. In the constructed composite, SeS2 is predominantly encapsulated in the interlayer space of DLHCs with a high loading of 75% (weight percentage) and serves as the active component for lithium storage. The presence of Se in the composite and the carbon framework not only alleviate the shuttling of polysulfide, but also improve the conductivity of electrodes. Migration of active materials from the interlayer void to the hollow cavity of DLHCs after cycling, which further mitigates the loss of active materials and the shuttle effect, is observed. As a result, the SeS2/DLHC composite delivers a high specific capacity (930 mA.h.g-1 at 0.2 C) and outstanding rate capability (400 mA.h.g-1 at 6 C), which is much better than those of SeS2/single-layered hollow carbon sphere, Se/DLHC, and S/DLHC composites. Notably, the SeS2/DLHC composite shows an ultralong cycle life with 89% capacity retention over 900 cycles at 1 C, or only 0.012% capacity decay per cycle. Our study reveals that both SeS2 and the double-layered structures are responsible for the excellent electrochemical performance. 展开更多
关键词 selenium sulfide double-layered hollowcarbon cathode materials lithium storage
原文传递
材料物性参数对双层微管气体辅助共挤出胀大的影响
17
作者 肖兵 刘彪 +4 位作者 陈天荣 纪海波 邓小珍 徐芳 曾嘉航 《中国塑料》 CAS CSCD 北大核心 2024年第11期87-92,共6页
建立了单腔双层微管的传统微共挤和气辅微共挤流动模型,采用数值模拟技术研究了零剪切黏度(η_(0))、松弛时间(λ)、材料参数ε和ξ等对挤出胀大率的影响规律。结果表明,传统微共挤过程中,挤出胀大率受η_(0)和λ的影响较大,随着外层熔... 建立了单腔双层微管的传统微共挤和气辅微共挤流动模型,采用数值模拟技术研究了零剪切黏度(η_(0))、松弛时间(λ)、材料参数ε和ξ等对挤出胀大率的影响规律。结果表明,传统微共挤过程中,挤出胀大率受η_(0)和λ的影响较大,随着外层熔体η_(0)增大,由29.15%增大至43.77%后趋于稳定;挤出胀大率受ε和ξ的影响较小,随着ε和ξ的增大略有减小,胀大率在37%~39%区间变化。而气辅共挤过程中,当η_(0)、λ、ε和ξ变化时,挤出胀大率始终接近零,无明显胀大和变形现象。 展开更多
关键词 材料物性参数 双层微管共挤 气体辅助技术 挤出胀大
下载PDF
电容去离子碳基电极材料的研究进展
18
作者 刘转年 魏本龙 +1 位作者 张培平 苏广平 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第2期320-330,共11页
电容去离子(CDI)技术具有能耗低、再生效率高、无二次污染、易于操作等优点,在解决水资源短缺和水环境污染方面应用广泛。开发具有高电化学性能和盐吸附能力的电极材料是CDI脱盐的关键。碳材料因其高比表面积、丰富的孔隙结构、优异的... 电容去离子(CDI)技术具有能耗低、再生效率高、无二次污染、易于操作等优点,在解决水资源短缺和水环境污染方面应用广泛。开发具有高电化学性能和盐吸附能力的电极材料是CDI脱盐的关键。碳材料因其高比表面积、丰富的孔隙结构、优异的导电性和良好的稳定性而被广泛用作CDI电极。本文在介绍CDI技术基本原理的基础上,综述了5类典型碳基电极材料的研究进展,重点是材料设计和改进的吸附性能。对比分析了不同种类电极材料之间的优缺点,探讨了工业化存在的问题及改进方向。 展开更多
关键词 电容去离子 碳基电极材料 双电层 脱盐
下载PDF
花状MgCo_(2)O_(4)@CoMn LDH复合材料的制备与性能研究 被引量:1
19
作者 胡潭伟 丁悦 +4 位作者 唐梦凡 倪航 田玉 朱小龙 郑广 《江汉大学学报(自然科学版)》 2024年第4期5-14,共10页
超级电容器(SCs)因其功率高、稳定性能好和快速的充放电能力,在储能设备领域受到广泛关注。采用水热法结合电沉积法合成花状MgCo_(2)O_(4)@CoMn层状双氢氧化物(LDH)复合材料。得益于MgCo_(2)O_(4)和CoMn LDH异质界面间的协同作用,改善... 超级电容器(SCs)因其功率高、稳定性能好和快速的充放电能力,在储能设备领域受到广泛关注。采用水热法结合电沉积法合成花状MgCo_(2)O_(4)@CoMn层状双氢氧化物(LDH)复合材料。得益于MgCo_(2)O_(4)和CoMn LDH异质界面间的协同作用,改善了复合材料的电子传输;此外,低结晶度CoMn LDH的成功复合提供了良好的亲水性和活性位点;电化学测试中,复合材料在4.5 mg/cm^(2)的高负载量下,表现出1 501.8 F/g的高比电容,并且在20 A/g的电流密度下循环3 000次后,比电容保持率为82.98%,展示了其优异的循环稳定性。结果表明MgCo_(2)O_(4)@CoMn LDH复合材料可用作电化学储能的电极材料之一。 展开更多
关键词 层状双氢氧化物 MgCo_(2)O_(4) 电沉积法 复合材料 超级电容器
下载PDF
双电层电容器的关键材料及其发展前景
20
作者 张贺明 张遥 +1 位作者 付甜甜 张洋 《电源技术》 CAS 北大核心 2024年第7期1198-1205,共8页
介绍了目前双电层电容器关键材料的发展和国内外的研究现状,包括:活性材料、导电剂、粘结剂、电解液和隔膜等;介绍了目前双电层电容器依性能特点在不同应用领域中的使用,讨论了双电层电容器所具有的优劣势及其发展趋势。
关键词 双电层电容器 关键材料 发展趋势
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部