Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered doubl...Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage.展开更多
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc...Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.展开更多
We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum...We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum shows a maximum peak near the wavelength 370 nm, the maximum emission peak appears at 430 um and the photoluminescence colour of the Co-Al-LDH sample is blue. This new optical property will be expected to extend the potential applications of LDHs in optical materials field.展开更多
The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previo...The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.展开更多
The increasing demand of high-performance supercapacitors has aroused great interest in developing specific capacitance and energy density. Active carbon (AC) has attracted much attention as a promising electrode ma...The increasing demand of high-performance supercapacitors has aroused great interest in developing specific capacitance and energy density. Active carbon (AC) has attracted much attention as a promising electrode material for electric double-layer capacitors (EDLCs). Here, a facile strategy has been employed to fabricate high-performance EDLCs using the surface-oxygen functionalized active carbon (FAC) as an electrode and 2 M KOH with K3Fe(CN)6 as an electrolyte. In this system, K3Fe(CN)6 was used as a redox additive to enhance the performance of EDLCs. A 38.5% increase in specific capacitance (207.7 F g-1) was achieved compared with the KOH electrolyte without adding K3Fe(CN)G (152.9 F g-1), due to the synergistic effects between oxygenic functional groups and redox electrolyte. These findings provide an alternative route to improve the performance of EDLCs, which are promising candidates for the broad applications of high-performance supercapacitors.展开更多
Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and el...Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and electrode fabrication of layered double hydroxides,none summarize the effects of various modification methods on the structure and performance of layered double hydroxides in the supercapacitor.In a bid to fill this gap,in this review,we summarize the progress of modification methods such as exfoliation,intercalation,vacancy,doping,phase transformation,and composition regulation of layered double hydroxides in the field of the supercapacitor and put forward some opinions regarding the progress of research on the methods used in modifying the layered double hydroxides.展开更多
N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to...N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.展开更多
Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface are...Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface area changes of heat treated Mg/AI-LDH is evaluated by XRD, TEM and N2-BET analyses. The results indicate that the magnesium-aluminum LDH with carbonate as interlayer anion, periclase-like oxides was formed at temperatures of 400-800℃. Meanwhile, 2-3 nanometer mesoporous were formed during decomposition of LDH. However, the heat treated samples still preserve the morphology of the original LDH plates. Periclase-like formed from LDH heat treatment may re-hydrolyze and recover the structure of LDH. However, crystallinity of the recovered LDH is lower than that of the original LDH. This heat treatment will result in formation of (Mg, Al)-oxide nano-crystals and nanopores among the nano-crystals. When heating temperature exceeds 1000, the periclase-like (Mg, Al)-oxide is transformed into a composite with periclase (MgO) and spinel phases. The periclase can be re-hydrolyzed and dissolved in HCl solution. After acid treatment, the sample with a high surface area is composed of spinel nano-crystals and nanopores among them. Our results will provide a new and economic way to synthesize mesoporous materials through pathways of phase transformation of precursor materials with different composition.展开更多
Carbon-based materials are typical and commercially active electrode for supercapacitors due to their advantages such as low cost, good stability and easy availability. In the light of energy storage, supercapacitors ...Carbon-based materials are typical and commercially active electrode for supercapacitors due to their advantages such as low cost, good stability and easy availability. In the light of energy storage, supercapacitors mechanism is classified into EDLCs (electrochemical double layer capacitors) and pseudocapacitors. Multidimensional carbon nanomaterials (active carbon, carbon nanotube, graphene, etc.), carbon-based composite and corresponding electrolyte are the critical and important factor in the eyes of researcher. In this minireview, we will discuss the storage mechanism and summarize recent developed novel carbon and carbon-based materials in supercapacitors. The techniques to design the novel nanostructure and high performance electrodematerials that facilitate charge transfer to achieve high energy and power densities will also be discussed.展开更多
Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of Mg H_(2)hydrogen storage material.Here,ultrathin Ni Ti-layered double hydroxide(Ni Ti-LDH)n...Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of Mg H_(2)hydrogen storage material.Here,ultrathin Ni Ti-layered double hydroxide(Ni Ti-LDH)nanosheets are used as precursors to prepare Mg_(2)Ni/TiH_(1.5)composite catalysts to improve the hydrogen storage properties of MgH_(2).The variation of Ni/Ti ratio in LDH plays an important role in regulating the composition,morphology and distribution of Mg_(2)Ni/Ti H_(1.5)catalysts,which significantly affect their synergistic catalytic effect.Mg_(2)Ni/TiH_(1.5)composite catalyst exhibits significantly improved catalytic performance compared with conventional Ni-,Ti-and Ni/Ti-based catalysts.The optimal Mg H_(2)/Mg_(2)Ni/TiH_(1.5)system shows a significantly reduced desorption temperature of 212℃which is 133℃lower than that of pure MgH_(2)(345℃),and can release 5.97 wt%hydrogen within 300s at 300℃.Further mechanism analysis reveals that the unique flaky morphology and suitable composition of Ni/Ti LDH can significantly enhance the synergistic effect of Mg_(2)Ni and TiH_(1.5),which promotes the fracture of the H–H and Mg-H bonds.展开更多
Salt freezing damage has severe impacts on durability of cement-based materials(CBMs).Calcined layered double hydroxide(CLDH),as an efficient environmental-friendly adsorption material,can impart excellent salt freezi...Salt freezing damage has severe impacts on durability of cement-based materials(CBMs).Calcined layered double hydroxide(CLDH),as an efficient environmental-friendly adsorption material,can impart excellent salt freezing resistance to CBMs.In this work,salt freezing resistance improvement of CBMs incorporated with CLDH was experimentally evaluated by chloride binding capacity,mass loss rate,relative dynamic elastic modulus,setting time,compressive strength,and micro structure tests.Beside these,the salt freezing damage model was established to effectively express the quantitative relationship between influencing factors and evaluation indexes of the salt freezing resistance of CBMs.Results show that CLDH can reconstruct its original layered structure to form reconstructed layered double hydroxide(RLDH).RLDH combines with chloride ions to form RLDH-Cl recrystallization,which can improve chloride binding capacity and pore structures of CBMs to relieve the salt freezing damage.The salt freezing damage model indicates that the suitable CLDH content can evidently alleviate the salt freezing damage,which facilitates the quantitative analysis of the effect of CLDH on the salt freezing resistance of CBMs.展开更多
Cathode materials Li[CoxNiyMn1-x-y]O2 for lithium secondary batteries have been prepared by a new route using layered double hydroxides (LDHs) as a precursor. The resulting layered phase with the α- NaFe02 structur...Cathode materials Li[CoxNiyMn1-x-y]O2 for lithium secondary batteries have been prepared by a new route using layered double hydroxides (LDHs) as a precursor. The resulting layered phase with the α- NaFe02 structure crystallizes in the rhombohedral system, with space group R-3m having an interlayer spacing close to 0.47 nm. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation states of Co, Ni and Mn. The effects of varying the Co[Ni[Mn ratio on both the structure and electrochemical properties of Li[CoxNiyMn1-x-y]O2 have been investigated by X-ray diffraction and electrochemical tests. The products demonstrated a rather stable cycling behavior, with a reversible capacity of 118 mAh/g for the layered material with Co/Ni/Mn = 1/1/1.展开更多
Electric double layer(EDL)gating is a technique in which ions in an electrolyte modulate the charge transport in an electronic material through electrical field effects.A sub-nanogap capacitor is induced at the interf...Electric double layer(EDL)gating is a technique in which ions in an electrolyte modulate the charge transport in an electronic material through electrical field effects.A sub-nanogap capacitor is induced at the interface of electrolyte/semiconductor under the external electrical field and the capacitor has an ultrahigh capacitance density(~μF cm-2).Recently,EDL gating technique,as an interfacial gating,is widely used in two-dimensional(2D)crystals for various sophisti-cated materials characterization and device applications.This review introduces the EDL-gated transistors based on 2D materials and their applications in the field of bioinspired optoelectronic detection,sen-sing,logic circuits,and neuromorphic computation.展开更多
Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-t...Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.展开更多
Selenium sulfide/double-layered hollow carbon sphere (SeS2/DLHC) composites have been designed as high-performance cathode materials for novel Li-SeS2 batteries. In the constructed composite, SeS2 is predominantly e...Selenium sulfide/double-layered hollow carbon sphere (SeS2/DLHC) composites have been designed as high-performance cathode materials for novel Li-SeS2 batteries. In the constructed composite, SeS2 is predominantly encapsulated in the interlayer space of DLHCs with a high loading of 75% (weight percentage) and serves as the active component for lithium storage. The presence of Se in the composite and the carbon framework not only alleviate the shuttling of polysulfide, but also improve the conductivity of electrodes. Migration of active materials from the interlayer void to the hollow cavity of DLHCs after cycling, which further mitigates the loss of active materials and the shuttle effect, is observed. As a result, the SeS2/DLHC composite delivers a high specific capacity (930 mA.h.g-1 at 0.2 C) and outstanding rate capability (400 mA.h.g-1 at 6 C), which is much better than those of SeS2/single-layered hollow carbon sphere, Se/DLHC, and S/DLHC composites. Notably, the SeS2/DLHC composite shows an ultralong cycle life with 89% capacity retention over 900 cycles at 1 C, or only 0.012% capacity decay per cycle. Our study reveals that both SeS2 and the double-layered structures are responsible for the excellent electrochemical performance.展开更多
文摘Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.
基金supported by the National Natural Science Foundation of China(No.20573065)the Natural Science Foundation of Shandong Province of China(Nos.Z2005B02 and Z2006B06).
文摘We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum shows a maximum peak near the wavelength 370 nm, the maximum emission peak appears at 430 um and the photoluminescence colour of the Co-Al-LDH sample is blue. This new optical property will be expected to extend the potential applications of LDHs in optical materials field.
基金the financial support of the FUNCOAT project(Development and design of novel multifunctional PEO COATings,H2020-RISE-2019-2024,No.823942)the I2B funding in frame MUFfin projectACTICOAT project in frame of Era。
文摘The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.
基金supported by grants from the National Natural Science Foundation of China(Nos.21606033,21376034,21506086)
文摘The increasing demand of high-performance supercapacitors has aroused great interest in developing specific capacitance and energy density. Active carbon (AC) has attracted much attention as a promising electrode material for electric double-layer capacitors (EDLCs). Here, a facile strategy has been employed to fabricate high-performance EDLCs using the surface-oxygen functionalized active carbon (FAC) as an electrode and 2 M KOH with K3Fe(CN)6 as an electrolyte. In this system, K3Fe(CN)6 was used as a redox additive to enhance the performance of EDLCs. A 38.5% increase in specific capacitance (207.7 F g-1) was achieved compared with the KOH electrolyte without adding K3Fe(CN)G (152.9 F g-1), due to the synergistic effects between oxygenic functional groups and redox electrolyte. These findings provide an alternative route to improve the performance of EDLCs, which are promising candidates for the broad applications of high-performance supercapacitors.
基金The authors gratefully acknowledge the financial support provided by the project of Technological Innovation and Application Development in Chongqing(cstc2019jscxmsxm0378)the National Natural Science Foundation of China(Grant No.21576034 and 51908092)+1 种基金the State Education Ministry and Fundamental Research Funds for the Central Universities(2019CDQYCL042,2019CDXYCL0031,106112017CDJXSYY0001,2018CDYJSY0055,106112017CDJQJ138802,106112017CDJSK04XK11,and 2018CDQYCL0027)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254).
文摘Layered double hydroxides are one class or kind of 2 D layered materials that are considered promising for use in the supercapacitor.Although there have been many studies on the structure,composition,properties,and electrode fabrication of layered double hydroxides,none summarize the effects of various modification methods on the structure and performance of layered double hydroxides in the supercapacitor.In a bid to fill this gap,in this review,we summarize the progress of modification methods such as exfoliation,intercalation,vacancy,doping,phase transformation,and composition regulation of layered double hydroxides in the field of the supercapacitor and put forward some opinions regarding the progress of research on the methods used in modifying the layered double hydroxides.
基金the National Science Foundation for Excellent Young Scholars of China(21922815)the National Natural Science Foundation of China(22179139)+2 种基金the National Key Research and Development Program of China(2020YFB1505800)the Youth Innovation Promotion Association of CAS(2019178)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the CAS(XDA21000000)。
文摘N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.
基金the National Natural Science Foundation of China (No. 40472026) the 0utstanding 0verseas Chinese Scholars Fund of Chinese Academy of Sciences (2003-1-7).
文摘Although hydrotalcite, or layered double hydroxides (LDHs), is not a common mineral, it is an important material that can be easily synthesized in laboratory. In this study, structural evolvement and BET surface area changes of heat treated Mg/AI-LDH is evaluated by XRD, TEM and N2-BET analyses. The results indicate that the magnesium-aluminum LDH with carbonate as interlayer anion, periclase-like oxides was formed at temperatures of 400-800℃. Meanwhile, 2-3 nanometer mesoporous were formed during decomposition of LDH. However, the heat treated samples still preserve the morphology of the original LDH plates. Periclase-like formed from LDH heat treatment may re-hydrolyze and recover the structure of LDH. However, crystallinity of the recovered LDH is lower than that of the original LDH. This heat treatment will result in formation of (Mg, Al)-oxide nano-crystals and nanopores among the nano-crystals. When heating temperature exceeds 1000, the periclase-like (Mg, Al)-oxide is transformed into a composite with periclase (MgO) and spinel phases. The periclase can be re-hydrolyzed and dissolved in HCl solution. After acid treatment, the sample with a high surface area is composed of spinel nano-crystals and nanopores among them. Our results will provide a new and economic way to synthesize mesoporous materials through pathways of phase transformation of precursor materials with different composition.
基金Acknowledgment This work was financially supported by the National Natural Science Foundation of China (No. 51402040), China Postdoctoral Science Foundation (2015M582539), Science and Technology Support Program of Sichuan Province (2016RZ0054) and the National Hi-Tech Research and Development Program (863 Program) of China (No. 2015AA034202).
文摘Carbon-based materials are typical and commercially active electrode for supercapacitors due to their advantages such as low cost, good stability and easy availability. In the light of energy storage, supercapacitors mechanism is classified into EDLCs (electrochemical double layer capacitors) and pseudocapacitors. Multidimensional carbon nanomaterials (active carbon, carbon nanotube, graphene, etc.), carbon-based composite and corresponding electrolyte are the critical and important factor in the eyes of researcher. In this minireview, we will discuss the storage mechanism and summarize recent developed novel carbon and carbon-based materials in supercapacitors. The techniques to design the novel nanostructure and high performance electrodematerials that facilitate charge transfer to achieve high energy and power densities will also be discussed.
基金supported by National Key Research and Development Program of China(2021YFB4000601)National Natural Science Foundation of China(51731002,U21A20328)。
文摘Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of Mg H_(2)hydrogen storage material.Here,ultrathin Ni Ti-layered double hydroxide(Ni Ti-LDH)nanosheets are used as precursors to prepare Mg_(2)Ni/TiH_(1.5)composite catalysts to improve the hydrogen storage properties of MgH_(2).The variation of Ni/Ti ratio in LDH plays an important role in regulating the composition,morphology and distribution of Mg_(2)Ni/Ti H_(1.5)catalysts,which significantly affect their synergistic catalytic effect.Mg_(2)Ni/TiH_(1.5)composite catalyst exhibits significantly improved catalytic performance compared with conventional Ni-,Ti-and Ni/Ti-based catalysts.The optimal Mg H_(2)/Mg_(2)Ni/TiH_(1.5)system shows a significantly reduced desorption temperature of 212℃which is 133℃lower than that of pure MgH_(2)(345℃),and can release 5.97 wt%hydrogen within 300s at 300℃.Further mechanism analysis reveals that the unique flaky morphology and suitable composition of Ni/Ti LDH can significantly enhance the synergistic effect of Mg_(2)Ni and TiH_(1.5),which promotes the fracture of the H–H and Mg-H bonds.
基金This work is supported by Science and Technology Development Project of Xinjiang Production and Construction Corps (No. 2021DB005)Project of Department of Transport of Shaanxi Province (21-53K)+1 种基金the Central Plains Thousand People Plan of Henan Province (204200510004)the Fundamental Research Funds for the Central Universities, CHD (300102312724, 300102312402). The authors also thank to the reviewers for their valuable comments and suggestions concerning our manuscript.
文摘Salt freezing damage has severe impacts on durability of cement-based materials(CBMs).Calcined layered double hydroxide(CLDH),as an efficient environmental-friendly adsorption material,can impart excellent salt freezing resistance to CBMs.In this work,salt freezing resistance improvement of CBMs incorporated with CLDH was experimentally evaluated by chloride binding capacity,mass loss rate,relative dynamic elastic modulus,setting time,compressive strength,and micro structure tests.Beside these,the salt freezing damage model was established to effectively express the quantitative relationship between influencing factors and evaluation indexes of the salt freezing resistance of CBMs.Results show that CLDH can reconstruct its original layered structure to form reconstructed layered double hydroxide(RLDH).RLDH combines with chloride ions to form RLDH-Cl recrystallization,which can improve chloride binding capacity and pore structures of CBMs to relieve the salt freezing damage.The salt freezing damage model indicates that the suitable CLDH content can evidently alleviate the salt freezing damage,which facilitates the quantitative analysis of the effect of CLDH on the salt freezing resistance of CBMs.
基金supported by the National Natural Science Foun-dation of China, the 111 Project (grant no.: B07004) the Natural Science Foundation for Young Teachers of Beijing University of Chemical Technology (grant no.: QN0723)
文摘Cathode materials Li[CoxNiyMn1-x-y]O2 for lithium secondary batteries have been prepared by a new route using layered double hydroxides (LDHs) as a precursor. The resulting layered phase with the α- NaFe02 structure crystallizes in the rhombohedral system, with space group R-3m having an interlayer spacing close to 0.47 nm. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation states of Co, Ni and Mn. The effects of varying the Co[Ni[Mn ratio on both the structure and electrochemical properties of Li[CoxNiyMn1-x-y]O2 have been investigated by X-ray diffraction and electrochemical tests. The products demonstrated a rather stable cycling behavior, with a reversible capacity of 118 mAh/g for the layered material with Co/Ni/Mn = 1/1/1.
基金supported by the National Key Research and Development Program of China(2021YFB3200304)the National Natural Science Foundation of China(52073031),Beijing Nova Program(Z211100002121148)+1 种基金Fundamental Research Funds for the Central Universities(EOEG6801X2)the"Hundred Talents Program"of the Chinese Academy of Sciences.
文摘Electric double layer(EDL)gating is a technique in which ions in an electrolyte modulate the charge transport in an electronic material through electrical field effects.A sub-nanogap capacitor is induced at the interface of electrolyte/semiconductor under the external electrical field and the capacitor has an ultrahigh capacitance density(~μF cm-2).Recently,EDL gating technique,as an interfacial gating,is widely used in two-dimensional(2D)crystals for various sophisti-cated materials characterization and device applications.This review introduces the EDL-gated transistors based on 2D materials and their applications in the field of bioinspired optoelectronic detection,sen-sing,logic circuits,and neuromorphic computation.
基金supported by the National Key R&D Program of China(Nos.2023YFA1507800,2023YFA1507801)the National Natural Science Foundation of China(Nos.22288102,22208008)the Fundamental Research Funds for the Central Universities,China(No.ZY2423).
文摘Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.
基金The authors acknowledge the financial support from the Australian Research Council, the Queensland Government, the CAS/SAFEA International Partnership Program for Creative Research Teams, the Australian National Fabrication Facility and the Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland. L. Z. acknowledges the financial support from the National Natural Science Foundation of China (No. 51502226).
文摘Selenium sulfide/double-layered hollow carbon sphere (SeS2/DLHC) composites have been designed as high-performance cathode materials for novel Li-SeS2 batteries. In the constructed composite, SeS2 is predominantly encapsulated in the interlayer space of DLHCs with a high loading of 75% (weight percentage) and serves as the active component for lithium storage. The presence of Se in the composite and the carbon framework not only alleviate the shuttling of polysulfide, but also improve the conductivity of electrodes. Migration of active materials from the interlayer void to the hollow cavity of DLHCs after cycling, which further mitigates the loss of active materials and the shuttle effect, is observed. As a result, the SeS2/DLHC composite delivers a high specific capacity (930 mA.h.g-1 at 0.2 C) and outstanding rate capability (400 mA.h.g-1 at 6 C), which is much better than those of SeS2/single-layered hollow carbon sphere, Se/DLHC, and S/DLHC composites. Notably, the SeS2/DLHC composite shows an ultralong cycle life with 89% capacity retention over 900 cycles at 1 C, or only 0.012% capacity decay per cycle. Our study reveals that both SeS2 and the double-layered structures are responsible for the excellent electrochemical performance.