Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more...Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more and more attention from Chinese government and scientists. In this study, the possible effects of climate warming on the national northern limits of cropping systems, the northern limits of winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation in China from 1981 to 2007 were analyzed. Also, the possible change of crop yield caused by planting limits displacement during the periods 1950s-1981 and 1981-2007 was compared and discussed. The recognized calculation methods of agricultural climatic indices were employed. According to the indices of climatic regionalization for cropping systems, the national northern limits of cropping systems, winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation during two periods, including the 1950s-1980 and 1981-2007, were drawn with ArcGIS software. Compared with the situation during the 1950s- 1980, the northern limits of double cropping system during 1981-2007 showed significant spatial displacement in Shaanxi, Shanxi, Hebei, and Liaoning provinces and Beijing municipality, China. The northern limits of triple cropping system showed the maximum spatial displacement in Hunan, Hubei, Anhui, Jiangsu, and Zhejiang provinces, China. Without considering variety change and social economic factors, the per unit area grain yield of main planting patterns would increase about 54-106% if single cropping system was replaced by double cropping system, which turned out to be 27- 58% if double cropping system was replaced by triple cropping system. In Liaoning, Hebei, Shanxi, Shaanxi, Gansu, and Qinghai provinces, Inner Mongolia and Ningxia autonomous regions, China, the northern limits of winter wheat during 1981-2007 moved northward and expanded westward in different degrees, compared with those during the 1950s-1980. Taking Hebei Province as an example, the northern limits of winter wheat moved northward, and the per unit area grain yield would averagely increase about 25% in the change region if the spring wheat was replaced by winter wheat. In Zhejiang, Anhui, Hubei, and Hunan provinces, China, the planting northern limits of double rice moved northward, and the per unit area grain yield would increase in different degrees only from the perspective of heat resource. The stable- yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward in most regions, which was caused by the decrease of local precipitation in recent years. During the past 50 yr, climate warming made the national northern limits of cropping systems move northward in different degrees, the northern limits of winter wheat and double rice both moved northward, and the cropping system change would cause the increase of per unit area grain yield in the change region. However, the stable-yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward due to the decrease of precipitation.展开更多
An increasing number of annealing furnaces have recently been using cheaper and cleaner natural gas (NG) instead of liquefied petroleum gas (LPG) as fuel gas.However,the fuel gas of the furnaces often needs to be ...An increasing number of annealing furnaces have recently been using cheaper and cleaner natural gas (NG) instead of liquefied petroleum gas (LPG) as fuel gas.However,the fuel gas of the furnaces often needs to be changed when NG supply is not adequate or when LPG becomes cheaper.Usually,changing the fuel gas involves changing various equipment as well as control parameters for instruments and the control system and hence is time consuming.Therefore,it is important to develop a quick process for changing fuel gas.This study discusses the techniques for quickly changing fuel gas in an annealing furnace.These techniques deal with the design of the pipe,valve and burner,the selection of the flow meter and the flow control valve,the switch of the software and parameters for the control system,as well as the operation,commissioning and hot test of the furnace when the fuel gas is changed.Using these techniques,it is possible to change fuel gas in 6 h.展开更多
基金funded by the Mode Construction of Modern Farming System and Supporting Technology Research and Demonstration, China (200803028)
文摘Significantly increasing temperature since the 1980s in China has become a consensus under the background of global climate change and how climate change affects agriculture or even cropping systems has attracted more and more attention from Chinese government and scientists. In this study, the possible effects of climate warming on the national northern limits of cropping systems, the northern limits of winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation in China from 1981 to 2007 were analyzed. Also, the possible change of crop yield caused by planting limits displacement during the periods 1950s-1981 and 1981-2007 was compared and discussed. The recognized calculation methods of agricultural climatic indices were employed. According to the indices of climatic regionalization for cropping systems, the national northern limits of cropping systems, winter wheat and double rice, and the stable-yield northern limits of rainfed winter wheat-summer maize rotation during two periods, including the 1950s-1980 and 1981-2007, were drawn with ArcGIS software. Compared with the situation during the 1950s- 1980, the northern limits of double cropping system during 1981-2007 showed significant spatial displacement in Shaanxi, Shanxi, Hebei, and Liaoning provinces and Beijing municipality, China. The northern limits of triple cropping system showed the maximum spatial displacement in Hunan, Hubei, Anhui, Jiangsu, and Zhejiang provinces, China. Without considering variety change and social economic factors, the per unit area grain yield of main planting patterns would increase about 54-106% if single cropping system was replaced by double cropping system, which turned out to be 27- 58% if double cropping system was replaced by triple cropping system. In Liaoning, Hebei, Shanxi, Shaanxi, Gansu, and Qinghai provinces, Inner Mongolia and Ningxia autonomous regions, China, the northern limits of winter wheat during 1981-2007 moved northward and expanded westward in different degrees, compared with those during the 1950s-1980. Taking Hebei Province as an example, the northern limits of winter wheat moved northward, and the per unit area grain yield would averagely increase about 25% in the change region if the spring wheat was replaced by winter wheat. In Zhejiang, Anhui, Hubei, and Hunan provinces, China, the planting northern limits of double rice moved northward, and the per unit area grain yield would increase in different degrees only from the perspective of heat resource. The stable- yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward in most regions, which was caused by the decrease of local precipitation in recent years. During the past 50 yr, climate warming made the national northern limits of cropping systems move northward in different degrees, the northern limits of winter wheat and double rice both moved northward, and the cropping system change would cause the increase of per unit area grain yield in the change region. However, the stable-yield northern limits of rainfed winter wheat-summer maize rotation moved southeastward due to the decrease of precipitation.
文摘An increasing number of annealing furnaces have recently been using cheaper and cleaner natural gas (NG) instead of liquefied petroleum gas (LPG) as fuel gas.However,the fuel gas of the furnaces often needs to be changed when NG supply is not adequate or when LPG becomes cheaper.Usually,changing the fuel gas involves changing various equipment as well as control parameters for instruments and the control system and hence is time consuming.Therefore,it is important to develop a quick process for changing fuel gas.This study discusses the techniques for quickly changing fuel gas in an annealing furnace.These techniques deal with the design of the pipe,valve and burner,the selection of the flow meter and the flow control valve,the switch of the software and parameters for the control system,as well as the operation,commissioning and hot test of the furnace when the fuel gas is changed.Using these techniques,it is possible to change fuel gas in 6 h.