The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
Stepper motor driven systems are widely used in industrial applications. They are mainly used for their low cost open-loop high performance. However, as dynamic systems need to be increasingly faster and their motion ...Stepper motor driven systems are widely used in industrial applications. They are mainly used for their low cost open-loop high performance. However, as dynamic systems need to be increasingly faster and their motion more precise, it is important to have an open-loop system which is accurate and reliable. In this paper, we present a novel technique in which a genetic algorithm (GA) based lookup table approach is used to find the optimal stepping sequence of an open-loop stepper motor system. The optimal sequence objective is to minimize residual vibration and to accurately follow trajectory. A genetic algorithm is used to find the best stepping sequence which minimizes the error and improves the system performance. Numerical simulation has showed the effectiveness of our approach to improve the system performance for both position and velocity. The optimized system reduced the residual vibration and was able to follow the trajectory with minimal error.展开更多
为了降低缸内直喷汽油(Gasoline direct injection,GDI)发动机共轨系统的轨压波动,同时减少共轨系统结构参数实验标定的工作量,提出了基于改进型遗传算法的共轨系统结构参数优化设计方法。首先,在GT-suite搭建了GDI共轨系统模型,该模型...为了降低缸内直喷汽油(Gasoline direct injection,GDI)发动机共轨系统的轨压波动,同时减少共轨系统结构参数实验标定的工作量,提出了基于改进型遗传算法的共轨系统结构参数优化设计方法。首先,在GT-suite搭建了GDI共轨系统模型,该模型主要由高压泵模型、共轨管模型、喷油器模型及低压泵模型组成;其次,通过动力学特性分析了共轨管体积、阻尼孔直径对共轨压力波动及上升时间的影响,并验证了模型的合理性;然后设计了基于前馈和反馈相结合的共轨压力控制系统,在此基础上,以共轨压力波动及上升时间为目标函数,以阻尼孔直径和共轨管体积为优化变量,提出了基于改进型遗传算法的共轨系统多结构参数优化方法;最后,通过仿真实验验证了本文方法的有效性。展开更多
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.
文摘Stepper motor driven systems are widely used in industrial applications. They are mainly used for their low cost open-loop high performance. However, as dynamic systems need to be increasingly faster and their motion more precise, it is important to have an open-loop system which is accurate and reliable. In this paper, we present a novel technique in which a genetic algorithm (GA) based lookup table approach is used to find the optimal stepping sequence of an open-loop stepper motor system. The optimal sequence objective is to minimize residual vibration and to accurately follow trajectory. A genetic algorithm is used to find the best stepping sequence which minimizes the error and improves the system performance. Numerical simulation has showed the effectiveness of our approach to improve the system performance for both position and velocity. The optimized system reduced the residual vibration and was able to follow the trajectory with minimal error.
文摘为了降低缸内直喷汽油(Gasoline direct injection,GDI)发动机共轨系统的轨压波动,同时减少共轨系统结构参数实验标定的工作量,提出了基于改进型遗传算法的共轨系统结构参数优化设计方法。首先,在GT-suite搭建了GDI共轨系统模型,该模型主要由高压泵模型、共轨管模型、喷油器模型及低压泵模型组成;其次,通过动力学特性分析了共轨管体积、阻尼孔直径对共轨压力波动及上升时间的影响,并验证了模型的合理性;然后设计了基于前馈和反馈相结合的共轨压力控制系统,在此基础上,以共轨压力波动及上升时间为目标函数,以阻尼孔直径和共轨管体积为优化变量,提出了基于改进型遗传算法的共轨系统多结构参数优化方法;最后,通过仿真实验验证了本文方法的有效性。