The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val...The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.展开更多
A new type nozzle flapper amplifier for double nozzle flapper electro-hydraulic servo valve is proposed in the paper.The electro-mechanical converter of new type nozzle flapper amplifier is designed by using the piezo...A new type nozzle flapper amplifier for double nozzle flapper electro-hydraulic servo valve is proposed in the paper.The electro-mechanical converter of new type nozzle flapper amplifier is designed by using the piezoelectric bimorph and beryllium-bronze materials.The structure and working principle of the new type nozzle flapper amplifier are introduced.Pressure characteristic and flowrate characteristic are analyzed by experimental method.The research results show that pressure characteristic has large amplification factor and output pressure;flowrate characteristic has large linear range and output flowrate.展开更多
基金Supposed by National Natural Science Foundation of China(Grant No.51075348)Hebei Provincial Natural Science Foundation of China(Grant No.E2011203151)Research Fund for Doctoral Program of Higher Education of China(Grant No.20101333110002)
文摘The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.
基金Item Sponsored by National Natural Science Foundation of China[51105170]Program of Science and Technology Development Plan of Jilin province of China[201105015]
文摘A new type nozzle flapper amplifier for double nozzle flapper electro-hydraulic servo valve is proposed in the paper.The electro-mechanical converter of new type nozzle flapper amplifier is designed by using the piezoelectric bimorph and beryllium-bronze materials.The structure and working principle of the new type nozzle flapper amplifier are introduced.Pressure characteristic and flowrate characteristic are analyzed by experimental method.The research results show that pressure characteristic has large amplification factor and output pressure;flowrate characteristic has large linear range and output flowrate.