In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu...In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.展开更多
The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo val...The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.展开更多
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulat...This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.展开更多
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the tempe...Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter.This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position.展开更多
Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchro...Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.展开更多
In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples ar...In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.展开更多
To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of t...To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.展开更多
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt...We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.展开更多
Substituted polyaryls were synthesized successfully via sterically hindered double Suzuki cross-couplings of arylboronic acids with aryl dibromides in the presence of Pd(PPh3)4 and KOtBu within a very short time. ?...Substituted polyaryls were synthesized successfully via sterically hindered double Suzuki cross-couplings of arylboronic acids with aryl dibromides in the presence of Pd(PPh3)4 and KOtBu within a very short time. ?2009 Guo Hua Gao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
A double-shell model of hydroelectric-generator stator system was established. Applying the theory of mechano-electric analytical dynamics theory, the nonlinear vibration equation of magnetism and solid coupling of hy...A double-shell model of hydroelectric-generator stator system was established. Applying the theory of mechano-electric analytical dynamics theory, the nonlinear vibration equation of magnetism and solid coupling of hydroelectric-generator stator system, under steadily balanced three-phases operating condition, was obtained. According to the method of multiple scales for nonlinear oscillations, the double resonances of magnetism and solid coupling of hydroelectric-generator stater system, were investigated. It is pointed out that the system has abundant dynamics phenomenon including the attendant jumps and coexistence of multiple stable motions.展开更多
This paper summarizes the research progress and major achievements of the coupling effect of water and fertilizer on grape cultivation in China and abroad in recent years,emphatically analyzes the application status a...This paper summarizes the research progress and major achievements of the coupling effect of water and fertilizer on grape cultivation in China and abroad in recent years,emphatically analyzes the application status and some problems of the coupling effect of water and fertilizer on double-cropping grape cultivation mode in Guangxi Zhuang Autonomous Region,discusses the key problems to be further resolved,and finally makes the relevant recommendations.展开更多
Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal...Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique. The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.展开更多
This paper concerns the approximate controllability of the initialboundary problem of double coupled semilinear degenerate parabolic equations.The equations are degenerate at the boundary,and the control function acts...This paper concerns the approximate controllability of the initialboundary problem of double coupled semilinear degenerate parabolic equations.The equations are degenerate at the boundary,and the control function acts in the interior of the spacial domain and acts only on one equation.We overcome the difficulty of the degeneracy of the equations to show that the problem is approximately controllable in L2 by means of a fixed point theorem and some compact estimates.That is to say,for any initial and desired data in L2,one can find a control function in L2 such that the weak solution to the problem approximately reaches the desired data in L2 at the terminal time.展开更多
In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered B...In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.展开更多
A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" di...A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" dispersion equation is derived with the Maxwell equations by using the variable separation method and the field-matching method. Through numerical calculations, the effects of the electron beam parameters and the staggered angle between adjacent walls on the linear gain are analyzed.展开更多
This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental availa...This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental available parameters show that photon-photon switching and π phase shift of single photons may be achieved with current experimental technology. As the probe and control fields are in different spatial modes, the system is superior for implementing cavity QED-based photonic quantum networks.展开更多
The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent th...The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.展开更多
The optical absorption spectra of the covalent crystals ZnX(X=S,Se) doped with Co 2+ are studied using the double covalency factors,which considers the anisotropic distortion of e g and t 2g orbits for d el...The optical absorption spectra of the covalent crystals ZnX(X=S,Se) doped with Co 2+ are studied using the double covalency factors,which considers the anisotropic distortion of e g and t 2g orbits for d electron.When the paramagnetic g factor is calculated,the contributions of the spin orbit coupling from the ligand ions are taken into account besides that from the central ion,which is the double ξ model.The calculated results indicate that the theoretical values coincide with the experimental values very well.This suggests that the method presented in this paper could be more valid to some strongly covalent crystals.展开更多
This study investigates numerically the coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles.Five scenarios are considered,each with varying initial separations S/L(where L ...This study investigates numerically the coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles.Five scenarios are considered,each with varying initial separations S/L(where L demotes the side length of the square)ranging from 0.125 to 1.0.Squares are filled with SF6gas,and are enclosed by N2gas.The simulations of shock-induced multispecies flow are performed by solving the two-dimensional compressible Euler equations with a higher-order explicit modal discontinuous Galerkin solver.The simulations demonstrate that the flow morphology resulting from the coupling effect is highly dependent on the separation between two squares.When the separation is large,the squares experience a weaker coupling effect and evolve independently.While,as the separation reduces,the coupling effect manifests earlier in the interaction and becomes more substantial.As a result,this phenomenon greatly intensifies the motion of inner upstream/downstream vortex rings towards the symmetry axis,leading to the emergence of multiple jets such as the twisted downward,upward,and coupled jets.A thorough exploration of the coupling effect of double squares is conducted by analyzing the vorticity production.Notably,a significant quantity of vorticity is produced along the squares interface for smaller separation.Further,these coupling effects result in various interface features(upstream/downstream movement,and height/width evolution),and temporal variations of various spatially integrated fields.Finally,the analysis of the flow structure also considers the interaction between two more flow parameters,the Mach and Atwood numbers,in order to evaluate the coupling effects.展开更多
The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals;however,this strategy is limited by the competing oxyg...The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals;however,this strategy is limited by the competing oxygen evolution reactions and high energy consumption.Herein,we report a hierarchical CoNi layered double hydroxides(LDHs)electrocatalyst with abundant Ni vacancies for the efficient anodic oxidation of 5-hydroxymethylfurfural(HMF)and cathodic hydrogen evolution.The unique hierarchical nanosheet structure and Ni vacancies provide outstanding activity and selectivity toward several biomass molecules because of the finely regulated electronic structure and highly-exposed active sites.In particular,a high faradaic efficiency(FE)at a high current density(99%at 100 mA cm^(-2))is achieved for HMF oxidation,and a two-electrode electrolyzer is assembled based on the Ni vacancies-enriched LDH,which realized a continuous synthesis of highly-pure 2,5-furandicarboxylic acid products with high yields(95%)and FE(90%).展开更多
文摘In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.
基金Supposed by National Natural Science Foundation of China(Grant No.51075348)Hebei Provincial Natural Science Foundation of China(Grant No.E2011203151)Research Fund for Doctoral Program of Higher Education of China(Grant No.20101333110002)
文摘The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120℃ and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution roles of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80℃, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80℃. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.
基金the National Natural Science Foundation of China under Grant Nos.40221503,40231004, 40233031.
文摘This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.
文摘Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter.This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position.
基金Supported by National Natural Science Foundation of China(Grant No.51307151)Zhejiang Provincial Public Welfare Technology Application Research Project of China(Grant No.2015C31078)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14E070008)Zhejiang Postdoctoral Science Foundation of China(Grant No.BSH1402065)Science Foundation of Zhejiang SciTech University(Grant No.13022151-Y)
文摘Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.
文摘In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.
基金Supported by the National Natural Science Foundation of China under Grant No.10971031
文摘To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.
文摘We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.
基金supported by National Natural Science Foundation of China(No.20873041)Shanghai Leading Academic Discipline Project(No.B409).
文摘Substituted polyaryls were synthesized successfully via sterically hindered double Suzuki cross-couplings of arylboronic acids with aryl dibromides in the presence of Pd(PPh3)4 and KOtBu within a very short time. ?2009 Guo Hua Gao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘A double-shell model of hydroelectric-generator stator system was established. Applying the theory of mechano-electric analytical dynamics theory, the nonlinear vibration equation of magnetism and solid coupling of hydroelectric-generator stator system, under steadily balanced three-phases operating condition, was obtained. According to the method of multiple scales for nonlinear oscillations, the double resonances of magnetism and solid coupling of hydroelectric-generator stater system, were investigated. It is pointed out that the system has abundant dynamics phenomenon including the attendant jumps and coexistence of multiple stable motions.
基金Supported by Special Funds for Bagui Scholars Construction ProjectSpecial Research Funds of Guangxi Academy of Agricultural Sciences(2015JZ30)+2 种基金National Key Technology R&D Program(2014BAD16B05)Scientific Research and Technological Development Project in Guangxi(14251007)Team Project of Guangxi Academy of Agricultural Sciences(2015YT82)
文摘This paper summarizes the research progress and major achievements of the coupling effect of water and fertilizer on grape cultivation in China and abroad in recent years,emphatically analyzes the application status and some problems of the coupling effect of water and fertilizer on double-cropping grape cultivation mode in Guangxi Zhuang Autonomous Region,discusses the key problems to be further resolved,and finally makes the relevant recommendations.
基金supported by the Natural Science Foundation of Liaoning Province under Grant No.20041021the Scientific Foundation of the Educational Department of Liaoning Province under Grant Nos.2004C006 and 20060638the Postdoctoral Foundation of Shenyang University of Technology
文摘Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique. The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.
基金the National Natural Science Foundation of China(Grant Nos.11925105,11801211).
文摘This paper concerns the approximate controllability of the initialboundary problem of double coupled semilinear degenerate parabolic equations.The equations are degenerate at the boundary,and the control function acts in the interior of the spacial domain and acts only on one equation.We overcome the difficulty of the degeneracy of the equations to show that the problem is approximately controllable in L2 by means of a fixed point theorem and some compact estimates.That is to say,for any initial and desired data in L2,one can find a control function in L2 such that the weak solution to the problem approximately reaches the desired data in L2 at the terminal time.
基金Funded by the Natural Science Foundation of China (No. 10171070)
文摘In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.
基金Project supported by the National Natural Science Foundation of China(Grant No.11205162)
文摘A three-dimensional model of the double-slot coupled cavity slow-wave structure (CCSWS) with a solid round elec- tron beam for the beam-wave interaction is presented. Based on the "cold" dispersion, the "hot" dispersion equation is derived with the Maxwell equations by using the variable separation method and the field-matching method. Through numerical calculations, the effects of the electron beam parameters and the staggered angle between adjacent walls on the linear gain are analyzed.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10574022 and 10575022)the Funds of Educational Committee of Fujian Province, China (Grant Nos JB07043)
文摘This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity. Theoretical derivation and numerical simulation with the experimental available parameters show that photon-photon switching and π phase shift of single photons may be achieved with current experimental technology. As the probe and control fields are in different spatial modes, the system is superior for implementing cavity QED-based photonic quantum networks.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61125103)the Vacuum Electronics National Lab Foundation, China (Grant No. 9140C050101110C0501)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.
文摘The optical absorption spectra of the covalent crystals ZnX(X=S,Se) doped with Co 2+ are studied using the double covalency factors,which considers the anisotropic distortion of e g and t 2g orbits for d electron.When the paramagnetic g factor is calculated,the contributions of the spin orbit coupling from the ligand ions are taken into account besides that from the central ion,which is the double ξ model.The calculated results indicate that the theoretical values coincide with the experimental values very well.This suggests that the method presented in this paper could be more valid to some strongly covalent crystals.
基金the funding through the German Research Foundation within the research unit DFG-FOR5409。
文摘This study investigates numerically the coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles.Five scenarios are considered,each with varying initial separations S/L(where L demotes the side length of the square)ranging from 0.125 to 1.0.Squares are filled with SF6gas,and are enclosed by N2gas.The simulations of shock-induced multispecies flow are performed by solving the two-dimensional compressible Euler equations with a higher-order explicit modal discontinuous Galerkin solver.The simulations demonstrate that the flow morphology resulting from the coupling effect is highly dependent on the separation between two squares.When the separation is large,the squares experience a weaker coupling effect and evolve independently.While,as the separation reduces,the coupling effect manifests earlier in the interaction and becomes more substantial.As a result,this phenomenon greatly intensifies the motion of inner upstream/downstream vortex rings towards the symmetry axis,leading to the emergence of multiple jets such as the twisted downward,upward,and coupled jets.A thorough exploration of the coupling effect of double squares is conducted by analyzing the vorticity production.Notably,a significant quantity of vorticity is produced along the squares interface for smaller separation.Further,these coupling effects result in various interface features(upstream/downstream movement,and height/width evolution),and temporal variations of various spatially integrated fields.Finally,the analysis of the flow structure also considers the interaction between two more flow parameters,the Mach and Atwood numbers,in order to evaluate the coupling effects.
基金This work was supported by the National Natural Science Foundation of China(22090031,22090030,21922501 and 21871021)Project funded by China Postdoctoral Science Foundation(2021M690319).
文摘The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals;however,this strategy is limited by the competing oxygen evolution reactions and high energy consumption.Herein,we report a hierarchical CoNi layered double hydroxides(LDHs)electrocatalyst with abundant Ni vacancies for the efficient anodic oxidation of 5-hydroxymethylfurfural(HMF)and cathodic hydrogen evolution.The unique hierarchical nanosheet structure and Ni vacancies provide outstanding activity and selectivity toward several biomass molecules because of the finely regulated electronic structure and highly-exposed active sites.In particular,a high faradaic efficiency(FE)at a high current density(99%at 100 mA cm^(-2))is achieved for HMF oxidation,and a two-electrode electrolyzer is assembled based on the Ni vacancies-enriched LDH,which realized a continuous synthesis of highly-pure 2,5-furandicarboxylic acid products with high yields(95%)and FE(90%).