We calculated the energy-momentum density of non-diagonal Bianchi type space-time in two different theories of gravity, General relativity (GR) and the theory of Teleparallel gravity (TG). Firstly, by applying Einstei...We calculated the energy-momentum density of non-diagonal Bianchi type space-time in two different theories of gravity, General relativity (GR) and the theory of Teleparallel gravity (TG). Firstly, by applying Einstein, Landau-Lifshitz, Bergmann-Thomson and M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescriptions, using double index complexes in <strong>GR</strong>. Secondly, in the frame work of <strong>TG</strong>, we used the energy momentum complexes of Einstein, Bergmann-Thomson and Landau-Lifshitz. We also study the spacial cases of non-diagonal Bianchi type space-time <strong>BII</strong>, <strong>BVIII</strong> and <strong>BIX</strong>. We obtained the same energy-momentum density components for Einstein and Bergmann-Thomson prescriptions for the above four mentioned space-times that we considered in our work. Also, we found that the energy density component in M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescription is zero for all Bianchi types space-times in GR. Furthermore, we show that if the metric components are functions of time t alone, then the total gravitational energy is identically zero.展开更多
文摘We calculated the energy-momentum density of non-diagonal Bianchi type space-time in two different theories of gravity, General relativity (GR) and the theory of Teleparallel gravity (TG). Firstly, by applying Einstein, Landau-Lifshitz, Bergmann-Thomson and M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescriptions, using double index complexes in <strong>GR</strong>. Secondly, in the frame work of <strong>TG</strong>, we used the energy momentum complexes of Einstein, Bergmann-Thomson and Landau-Lifshitz. We also study the spacial cases of non-diagonal Bianchi type space-time <strong>BII</strong>, <strong>BVIII</strong> and <strong>BIX</strong>. We obtained the same energy-momentum density components for Einstein and Bergmann-Thomson prescriptions for the above four mentioned space-times that we considered in our work. Also, we found that the energy density component in M<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ø</span></span></span>ller prescription is zero for all Bianchi types space-times in GR. Furthermore, we show that if the metric components are functions of time t alone, then the total gravitational energy is identically zero.