In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermit...Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].展开更多
Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support v...Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support vector regression models, this study takes cubic spline interpolation to generate a new polynomial smooth function |×|ε^ 2, in g-insensitive support vector regression. Theoretical analysis shows that Sε^2 -function is better than pε^2 -function in properties, and the approximation accuracy of the proposed smoothing function is two order higher than that of classical pε^2 -function. The experimental data shows the efficiency of the new approach.展开更多
针对锂电池低荷电状态时输出变化大和模型参数辨识困难问题,提出一种基于三次样条插值法的建模与参数辨识方法。首先建立了含SOC动态的三阶3RC-3D等效电路模型,分析了低SOC时应用最小二乘法对不同模型参数进行辨识产生的误差。在此基础...针对锂电池低荷电状态时输出变化大和模型参数辨识困难问题,提出一种基于三次样条插值法的建模与参数辨识方法。首先建立了含SOC动态的三阶3RC-3D等效电路模型,分析了低SOC时应用最小二乘法对不同模型参数进行辨识产生的误差。在此基础上,结合三次样条插值法的拟合特性和合适的边界条件,构造了三次样条插值函数,在SOC≤10%区间进行了模型各参数辨识,并拟合出了模型参数变化曲线。最后,将辨识后的模型参数曲线与混合脉冲功率特性HPPC(Hybrid Pulse Power Characterization)试验的实际测量值进行了对比。从比较结果看,本文所提的辨识方法减小了参数辨识误差,提高了模型精度,验证了在SOC≤10%区间应用三次样条插值法进行锂电池模型参数辨识的有效性。仿真结果表明,基于三次样条插值辨识方法建立的三阶3RC-3D等效电路模型能够高精度地跟踪锂电池输出外特性。展开更多
For a prescribed set of lacunary data{(x_(ν),f_(ν),f^(″)_(ν)):ν=0,1,...,N}with equally spaced knot sequence in the unit interval,we show the existence of a fam-ily of fractal splines S^(α)_(b)∈C 3[0,1]satisfyin...For a prescribed set of lacunary data{(x_(ν),f_(ν),f^(″)_(ν)):ν=0,1,...,N}with equally spaced knot sequence in the unit interval,we show the existence of a fam-ily of fractal splines S^(α)_(b)∈C 3[0,1]satisfying S^(α)_(b)(x_(ν))=f_(ν),(S^(α)_(b))^(2)(x_(ν))=f^(″)_(ν)forν=0,1,...,N and suitable boundary conditions.To this end,the unique quintic spline introduced by A.Meir and A.Sharma[SIAM J.Numer.Anal.10(3)1973,pp.433-442]is generalized by using fractal functions with variable scaling pa-rameters.The presence of scaling parameters that add extra“degrees of freedom”,self-referentiality of the interpolant,and“fractality”of the third derivative of the in-terpolant are additional features in the fractal version,which may be advantageous in applications.If the lacunary data is generated from a functionΦsatisfying certain smoothness condition,then for suitable choices of scaling factors,the corresponding fractal spline S^(α)_(b)satisfies||Φ^(r)−(S^(α)_(b))(r)||∞→0 for 0≤r≤3,as the number of partition points increases.展开更多
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
基金partially supported by the CSIR India(Grant No.09/084(0531)/2010-EMR-I)the SERC,DST India(Project No.SR/S4/MS:694/10)
文摘Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].
基金Supported by Guangdong Natural Science Foundation Project(No.S2011010002144)Province and Ministry Production and Research Projects(No.2012B091100497,2012B091100191,2012B091100383)+1 种基金Guangdong Province Enterprise Laboratory Project(No.2011A091000046)Guangdong Province Science and Technology Major Project(No.2012A080103010)
文摘Regression analysis is often formulated as an optimization problem with squared loss functions. Facing the challenge of the selection of the proper function class with polynomial smooth techniques applied to support vector regression models, this study takes cubic spline interpolation to generate a new polynomial smooth function |×|ε^ 2, in g-insensitive support vector regression. Theoretical analysis shows that Sε^2 -function is better than pε^2 -function in properties, and the approximation accuracy of the proposed smoothing function is two order higher than that of classical pε^2 -function. The experimental data shows the efficiency of the new approach.
文摘针对锂电池低荷电状态时输出变化大和模型参数辨识困难问题,提出一种基于三次样条插值法的建模与参数辨识方法。首先建立了含SOC动态的三阶3RC-3D等效电路模型,分析了低SOC时应用最小二乘法对不同模型参数进行辨识产生的误差。在此基础上,结合三次样条插值法的拟合特性和合适的边界条件,构造了三次样条插值函数,在SOC≤10%区间进行了模型各参数辨识,并拟合出了模型参数变化曲线。最后,将辨识后的模型参数曲线与混合脉冲功率特性HPPC(Hybrid Pulse Power Characterization)试验的实际测量值进行了对比。从比较结果看,本文所提的辨识方法减小了参数辨识误差,提高了模型精度,验证了在SOC≤10%区间应用三次样条插值法进行锂电池模型参数辨识的有效性。仿真结果表明,基于三次样条插值辨识方法建立的三阶3RC-3D等效电路模型能够高精度地跟踪锂电池输出外特性。
文摘For a prescribed set of lacunary data{(x_(ν),f_(ν),f^(″)_(ν)):ν=0,1,...,N}with equally spaced knot sequence in the unit interval,we show the existence of a fam-ily of fractal splines S^(α)_(b)∈C 3[0,1]satisfying S^(α)_(b)(x_(ν))=f_(ν),(S^(α)_(b))^(2)(x_(ν))=f^(″)_(ν)forν=0,1,...,N and suitable boundary conditions.To this end,the unique quintic spline introduced by A.Meir and A.Sharma[SIAM J.Numer.Anal.10(3)1973,pp.433-442]is generalized by using fractal functions with variable scaling pa-rameters.The presence of scaling parameters that add extra“degrees of freedom”,self-referentiality of the interpolant,and“fractality”of the third derivative of the in-terpolant are additional features in the fractal version,which may be advantageous in applications.If the lacunary data is generated from a functionΦsatisfying certain smoothness condition,then for suitable choices of scaling factors,the corresponding fractal spline S^(α)_(b)satisfies||Φ^(r)−(S^(α)_(b))(r)||∞→0 for 0≤r≤3,as the number of partition points increases.