The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vande...The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ultra Soft Pseudo Potential (US-PP) process. The Rb2PbBr6 and Rb2PbCl6 are found to be a (Г-Г) semiconductors with energy gaps of 0.275 and 1.142 eV, respectively making them promising photovoltaic materials. The metallic behavior of the materials for Rb2BX6 (B = Tc, W, Ir, Ta, Mn, Sb, Mo) has been confirmed showing the attendance of conducting lineaments. The dielectric function is found to be large close to the ultraviolet districts (3.10 - 4.13 eV). The extinction coefficient of the Rb2BX6 has the ability to be used for implements. The band structures and density of states ensure the magnetic semiconductors’ nature of the Rb2Mn (Cl, Br)6 perovskites. The total calculated magnetic moment of Rb2MnCl6 and Rb2MnB6 is 3.00μβ. Advanced spintronic technology requires room-temperature ferromagnetism. The present work confirms that, bromine and chlorine-founded double perovskites are extremely attractive for photovoltaic and optoelectronic devices.展开更多
Inorganic halide double perovskites A_(2)B'B"X_(6) have gained significant interests for their diverse composition,stable physicochemical properties,and potential for photoelectric applications.The influences...Inorganic halide double perovskites A_(2)B'B"X_(6) have gained significant interests for their diverse composition,stable physicochemical properties,and potential for photoelectric applications.The influences of trivalent and monovalent cations on the formation energy,decomposition energy,electronic structure and optical properties of cesium-based lead-free Cs^(+)_(2)B'B"Br_(6) (B'=Na^(+),In^(+)Cu^(+),or Ag^(+);B"=Bi^(3),Sb^(3+),In^(3+)) are systematically studied.In view of the analysis and results of the selected double perovskites,for the double perovskites with different B-site trivalent cation,the band gap increases in the order of Cs_(2)AgInBr_(6),Cs_(2)AgSbBr_(6) and Cs_(2)AgBiBr_(6),with Cs_(2)AgBiBr_(6) possessing the highest thermodynamic stability.Therefore,the Bi-based perovskites are further studied to elucidate the effect of monovalent cation on their stability and electronics.Results show that the thermodynamic stability rises in the sequence of Cs_(2)NaBiBr_(6),Cs_(2)InBiBr_(6),Cs_(2)AgBiBr_(6) and Cs_(2)CuBiBr_(6).Notably,Cs_(2)CuBiBr_(6) exhibits a relatively narrow and appropriate band gap of 1.4634 eV,together with the highest absorption coefficient than other compounds,suggesting that Cs_(2)CuBiBr_(6) is a promising light absorbing material that can be further explored experimentally and be applied to optoelectronic devices.Our research offers theoretical backing for the potential optoelectronic application of cesium-based lead-free halide double perovskites in solar energy conversion.展开更多
Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these mat...Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these materials under moist conditions pose significant barriers to large-scale production.To overcome these limitations,researchers have proposed mixed-valence double perovskites,where Cs_(2)Au~ⅠAu~ⅢI_6 is a particularly effective absorber due to its suitable band gap and high absorptance efficiency.To further extend the scope of these lead-free materials,we varied the trivalent gold ion and halogen anion in Cs_(2)Au~ⅠAu~ⅢI_6,resulting in 18 new structures with unique properties.Further,using first-principles calculations and elimination criteria,we identified four materials with ideal band gaps,small effective carrier mass,and strong anisotropic optical properties.According to theoretical modeling,Cs_(2)AuSbCl_6,Cs_(2)AuInCl_6,and Cs_(2)AuBiCl_6 are potential candidates for solar cell absorbers,with a spectroscopic limited maximum efficiency(SLME) of approximately 30% in a 0.25 μm-thick film.These three compounds have not been previously reported,and therefore,our work provides new insights into potential materials for solar energy conversion.We aim for this theoretical exploration of novel perovskites to guide future experiments and accelerate the development of high-performance photovoltaic devices.展开更多
The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron sp...The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.展开更多
Oxide double perovskites A2 B’B"O6 are a class of emerging materials in the fields of optoelectronics and catalysis.Due to the chemical flexibilities of perovskite structures,there are multiple elemental combina...Oxide double perovskites A2 B’B"O6 are a class of emerging materials in the fields of optoelectronics and catalysis.Due to the chemical flexibilities of perovskite structures,there are multiple elemental combinations of cations A,B’,and B",which leading to tremendous candidates.In this study,we comprehensively screened stable oxide double perovskite A2 B’B"O6 from a pool of 2,018 perovskite candidates using a high-throughput computational approach.By considering a tolerance factor(t)-octahedral factor(μ) phase diagram,138 candidates with Fm 3 m, P21/c,and R3 c phases were selected and systematically studied via first-principles calculations based on density functional theory.The screening procedure finally predicted the existence of 21 stable perovskites,and 14 among them have never been reported.Verification with existing experimental results demonstrates that the prediction accuracy for perovskite formability is approximately 90%.The predicted oxide double perovskites exhibit quasi-direct bandgaps ranging from 0 to 4.4 eV with a significantly small direct-indirect bandgap difference,balanced electron and hole effective masses,and strong optical absorptions.The newly predicted oxide double perovskites may enlarge the pool of material candidates for applications in optoelectronics and photocatalysis.This study provides a route for computational screening of novel perovskites for functional applications.展开更多
We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in d...We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in different planes to show the effect of every physical parameter.Based on the Monte Carlo simulations,which combine Metropolis algorithm and Ising model,we explore the thermal behavior of the total magnetization and susceptibility.We also present and discuss the influence of physical parameters such as the external magnetic field,the exchange coupling interactions between magnetic atoms,and the exchange magnetic field on the magnetization of the system.Moreover,the critical temperature of the system is about Tc=70 K,in agreement with the experimental value.Finally,the hysteresis loops of La2CuMnO6 are discussed.展开更多
A series of double perovskites RSrMnFeO6(R=La, Pr, Nd, Sm) was synthesized under mild hydrothermal conditions. Crystal growths of the samples were sensitive to alkalinity, temperature, filling fraction, and composit...A series of double perovskites RSrMnFeO6(R=La, Pr, Nd, Sm) was synthesized under mild hydrothermal conditions. Crystal growths of the samples were sensitive to alkalinity, temperature, filling fraction, and composition of initial reaction mixture. The desired series of compounds belongs to the class of AA'BB'O6 perovskites with a random distribution of Mn and Fe atoms over the B-cation sub-lattice. Their structures show the distorted orthorhombic symmetry with space group Pnma. The shapes and sizes of the crystals were analyzed on a Rigaku JSM-6700F by scanning electron microscopy. Analysis done by XPS, Mossbauer spectroscopy and iodometric titration reveals that Mn and Fe ions have +4 and +3 oxidation states, respectively.展开更多
A double perovskite oxide Ba2FeSbO6 was hydrothermally synthesized and structurally characterized by X-ray diffraction. This solid compound shows a single phase and has a trigonal structure with space group R3 ?m and...A double perovskite oxide Ba2FeSbO6 was hydrothermally synthesized and structurally characterized by X-ray diffraction. This solid compound shows a single phase and has a trigonal structure with space group R3 ?m and cell parameters of a=0.57261 nm and c=1.40244 nm. The dielectric constant and loss tangent of the solid measured in a frequency range from 100 Hz to 1 MHz at temperatures from 313 K to 513 K reveal a relaxation process of frequency dependence of the real part(ε') of dielectric constant and dielectric loss tan?. The frequency dependence of electrical property led to the framework of conductivity and electric modulus formalisms. The scaling behavior of imaginary part of electric modulus suggests that the relaxation describes the single mechanism at various temperatures. The variation tendency of the alternating current impedance indicates the thermally activated conduction process follows Jonsche's power law.展开更多
The Ba2Zn1-xNixWO6 double perovskite oxides were synthesized using solid state reaction method. The effect of replacement of Zn<sup>2+</sup> with Ni<sup>2+</sup> cation on the structural proper...The Ba2Zn1-xNixWO6 double perovskite oxides were synthesized using solid state reaction method. The effect of replacement of Zn<sup>2+</sup> with Ni<sup>2+</sup> cation on the structural properties was investigated by X-ray diffraction (XRD) at room temperature. From the X-ray diffraction and by means of standard Rietiveld method, the samples showed the same cubic crystal structure with (Fm-3m) space group and the crystallite size ranging from 71.91 nm to 148.71 nm. The unit cell volume was found to decrease as a result of the replacement, while there was no significant difference in the value of tolerance factor of the samples. This is may be due to the convergence of ionic radii of Ni<sup>2+</sup> and Zn<sup>2+</sup> cations. The Fourier Transform Infrared Spectroscopy (FTIR) was performed for the samples and the resultant characteristic absorption bands confirmed the double perovskite structure.展开更多
A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits ...A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits I4/m symmetry. The cation order η of the sample increases to 98.9(2)% from 94.2(3)%, which is prepared by the traditional sol-gel method. The initial magnetization isotherm of the sample is detected at 300 K. Unit-cell magnetization for the current sample is 1.332 #s at 300 K, and the one for the traditional sol-gel method sample is 0.946#9. Unit-cell magnetization is enhanced to 40.80% by the quench-treatment technique. Quench treatment is an effective method of enhancing the Fe/Mo order and magnetic properties of double perovskite SFMO.展开更多
The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤...The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤ x ≤ 1 ). The compounds have a monoclinic structure (space group P21/n) and the cell volume expands monotonically with La doping. The Tc and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-x LaxMnMoO6 decreases only at low doping levels (x ≤0.2); while at high doping levels (0.8≤x ≤1), electrical resistivity tends to increase greatly. The resuits suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.展开更多
The structural, electronic, and magnetic properties of double perovskite Sr_2FeReO_6 containing eight different imperfections of FeReor ReFeantisites, Fe1–Re1 or Fe1–Re4 interchanges, V_(Fe), V_(Re), VOor V_(Sr...The structural, electronic, and magnetic properties of double perovskite Sr_2FeReO_6 containing eight different imperfections of FeReor ReFeantisites, Fe1–Re1 or Fe1–Re4 interchanges, V_(Fe), V_(Re), VOor V_(Sr) vacancies have been studied by using the first-principles projector augmented wave(PAW) within generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction(GGA+U). No obvious structural changes are observed for the imperfect Sr_2FeReO_6 containing FeReor ReFeantisites, Fe1–Re1 or Fe1–Re4 interchanges, or VSrvacancy defects. However, the six(eight) nearest oxygen neighbors of the vacancy move away from(close to) VFeor V_(Re)(VO) vacancies. The half-metallic(HM) character is maintained for the imperfect Sr_2FeReO_6 containing FeReor ReFeantisites, Fe1–Re4 interchange, V_(Fe),VO or V_(Sr) vacancies, while it vanishes when the Fe1–Re1 interchange or VRevacancy is presented. So the Fe1–Re1 interchange and the VRevacancy defects should be avoided to preserve the HM character of Sr_2FeReO_6 and thus usage in spintronic devices. In the FeReor ReFeantisites, Fe1–Re1 or Fe1–Re4 interchanges cases, the spin moments of the Fe(Re)cations situated on Re(Fe) antisites are in an antiferromagnetic coupling with those of the Fe(Re) cations on the regular sites. In the V_(Fe), V_(Re), VO, or V_(Sr) vacancies cases, a ferromagnetic coupling is obtained within each cation sublattice,while the two cation sublattices are coupled antiferromagnetically. The total magnetic moments μtot(μB/f.u.) of the imperfect Sr_2FeReO_6 containing eight different defects decrease in the sequence of VSrvacancy(3.50), VRevacancy(3.43),FeReantisite(2.74), VOvacancy(2.64), VFevacancy(2.51), ReFeantisite(2.29), Fe1–Re4 interchange(1.96), Fe1–Re1interchange(1.87), and the mechanisms of the saturation magnetization reduction have been analyzed.展开更多
The ab initio generalized gradient approximation (GGA)+U study of multiferroic (La Bi )<sub>2</sub>FeCrO<sub>6</sub> in pnma structure and ferri-magnetic order, including Hubbard corrections ( ...The ab initio generalized gradient approximation (GGA)+U study of multiferroic (La Bi )<sub>2</sub>FeCrO<sub>6</sub> in pnma structure and ferri-magnetic order, including Hubbard corrections ( eV) for transition metal/rare earth d-electrons with 20 atoms cell, shows optimum local magnetic moments of (Cr , Fe equal to (−2.56, 4.14) μB and an ideal spin-down band gap of 1.54 eV. Tuned-band gap La-substituted double oxide perovskites BFCO should exhibit enhanced visible-light absorption and carrier mobility, thus could be convenient light absorbers and then efficient alternatives to wide-gap chalcopyrite absorber-based solar cells failing to achieve highest power conversion efficiencies, and even compete with their metal-organic halide perovskites counterparts.展开更多
Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double ...Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double perovskite(DP)materials are promising candidates to resolve these issues.Based on the density functional theory,we explore the geometric stability,thermodynamic stability,mechanical stability,electronic structures,and optical properties of theCs_(2)B 0BiI_(6)(B 0=Li,Na and K)DP materials.By analyzing the tolerance factor and octahedral factor,we find the geometric stabilities ofCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs are better thanCs_(2)LiBiI_(6).By calculating the total energy,formation energy and decomposition energy,we propose that the most favorable structure ofCs_(2)B 0BiI_(6) is the orthorhombic phase,andCs_(2)LiBiI_(6) is less stable relative to the other two counterparts from an energetic viewpoint.Mechanical stability evaluations reveal that the orthorhombicCs_(2)LiBiI_(6) material is less stable relative to the isostructuralCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs.The mechanical property calculations indicate that theCs_(2)B 0BiI_(6) DPs possess good ductility,which can be used as flexible materials.Electronic structures and optical property calculations show that the orthorhombicCs_(2)B 0BiI_(6) DPs have suitable band gap values,weaker exciton binding energies,and excellent optical absorption performance in the visible-light range.Based on the above comprehensive assessments,we can conclude that the orthorhombic Cs_(2)NaBiI_(6) and Cs_(2)KBiI_(6) DPs with good stability are promising candidates for solar cell applications.展开更多
Double perovskite oxide Sr2 Co Fe O6(SCFO) has been obtained using a high-pressure and high-temperature(HPHT)synthesis method. Valence states of Fe and Co and their distributions in SCFO were examined with X-ray p...Double perovskite oxide Sr2 Co Fe O6(SCFO) has been obtained using a high-pressure and high-temperature(HPHT)synthesis method. Valence states of Fe and Co and their distributions in SCFO were examined with X-ray photoelectron spectroscopy. The electric transport behavior of SCFO showed a semiconductor behavior that can be well described by Mott's law for variable-range hopping conduction. The structural stability of SCFO was investigated at pressures up to 31 GPa with no pressure-induced phase transition found. Bulk modulus B0 was determined to be 163(2) GPa by fitting the pressure–volume data to the Birch–Murnaghan equation of state.展开更多
Lead-free double perovskite Cs_(2)AgBiBr_(6) has gained increasing attention recently.However,the power conversion efficiency(PCE)of Cs_(2)AgBiBr_(6) perovskite solar cells(PSCs)is still low compared with their lead-b...Lead-free double perovskite Cs_(2)AgBiBr_(6) has gained increasing attention recently.However,the power conversion efficiency(PCE)of Cs_(2)AgBiBr_(6) perovskite solar cells(PSCs)is still low compared with their lead-based counterparts.Here,by using photoluminescence(PL),time-resolved photoluminescence(TRPL),and ultrafast transient absorption(TA)measurements,the unbalance between the electron and hole in diffusion and transfer,which limits the performance of the Cs_(2)AgBiBr_(6) PSCs,was further revealed.Considering this issue,a strategy of using the mesoporous TiO_(2) electron transport layer(ETL)to construct a bulk heterojunction in Cs_(2)AgBiBr_(6) PSCs was proposed.Consequently,the PCE had improved by over 24%comparing with that only used compact TiO_(2) ETL.Moreover,based on mesoporous TiO_(2),the unencapsulated Cs_(2)AgBiBr_(6) PSCs maintained 90%of their initial performance after approximately 1200 h of storage in a desiccator(humidity~30%).This work gives further understanding of Cs_(2)AgBiBr_(6) perovskite and demonstrates that a proper design of balancing the electron and hole diffusion can improve device performance.展开更多
The structural, magnetic and electronic properties of the double perovskite Ba2SmNbO6 (for the simple cubic structure where no octahedral tilting exists anymore) are studied using the density functional theory withi...The structural, magnetic and electronic properties of the double perovskite Ba2SmNbO6 (for the simple cubic structure where no octahedral tilting exists anymore) are studied using the density functional theory within the generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction. The total energy, the spin magnetic moment, the band structure and the density of states are calculated. The optimization of the lattice constants is 8.5173 A, which is in good agreement with the experimental value 8.5180 A. The calculations reveal that Ba2SmNbO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is 5.00μB/f.u. which comes mostly from the Sin3+ ion only. By analysis of the band structure, the compound exhibits the direct band gap material and half-metallic ferromagnetic nature with 100% spin-up polarization, which implies potential applications of this new lanthanide compound in magneto-electronic and spintronic devices.展开更多
Metal halide perovskites exhibit promising prospect in light-emitting diodes,solar cells,photodetectors and bioimaging.However,the workhorse of metal halide perovskites relies on toxicity lead element,which severely d...Metal halide perovskites exhibit promising prospect in light-emitting diodes,solar cells,photodetectors and bioimaging.However,the workhorse of metal halide perovskites relies on toxicity lead element,which severely damages human body and environment.Among lead-free perovskites,Cs_(2)NaInCl_(6)double perovskite is one of the most promising candidates because of its great stability and easy synthesis,but suffers inadequate optical performance.Here,we doped Sb^(3+)and Sm^(3+)into Cs_(2)NaInCl_(6)nanocrystals by a hot injection method.Cs_(2)NaInCl_(6):Sb^(3+)exhibits blue emission at 447 nm.Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)nanocrystals simultaneously generate the blue emission of Sb^(3+)and the multiple emissions of Sm^(3+)at 565,602,650 and 710 nm.With the increase of Sm^(3+)feed ratio,the emission color of Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)gradually moves to cold white region at(0.27,0.28)in CIE chromaticity diagram and correlated color temperature of 11840 K.This work shows the potential application of Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)nanocrystals as a single-component cold white emitter.展开更多
Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensiona...Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensional(2D)hybrid perovskites have demonstrated excellent promise for assembling dielectric switches,in which the dynamic motions of organic moieties afford driving force to trigger switchable dielectric phase transition.Here,we successfully assembled a new lead-free hybrid double perovskite,(CHA)4Cu Bi Br8(1,CHA=cyclohexylammonium),adopting a typical 2D structural motif,which shows dielectric anisotropy and bistable behaviors during the reversible phase transition near T_(c)=378 K(the Curie temperature).That is,its dielectric constants could be switched and tuned between high-dielectric and low-dielectric states.Structure analyses reveal that the ordered-disordered transformation of the organic CHA+moiety and distortion of inorganic framework account for its phase transition.This result will stimulate further exploration of molecular dielectric switches in this 2D environmentally friendly family.展开更多
Lead-free double perovskite nanocrystals(NCs)have emerged as a promising candidate in the optical field,owing to their non-toxic,good moist heat and chemical stability.However,their poor optical properties limited the...Lead-free double perovskite nanocrystals(NCs)have emerged as a promising candidate in the optical field,owing to their non-toxic,good moist heat and chemical stability.However,their poor optical properties limited their application.To improve the optical properties of lead-free double perovskite NCs,metal ion doping or alloying had been suggested as a promising strategy.Here,we prepared monodisperse,uniformly sized,cubic morphology of Cs_(2)AgBiCl_(6)NCs with different Na^(+)incorporation amounts via a simple hot-injection method.The Na^(+)incorporation broke the parity-forbidden transition by reducing the inversion symmetry of the electron wave function at the Ag site,which changed the parity of the self-trapped exciton wave function and thus allowed radiative recombination.As a result,the photoluminescence quantum yield(PLQY)of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs(12.1%)was higher than that of Cs_(2)AgBiCl_(6)NCs(2.4%),and the exciton lifetime of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs increased to 36.98 ns from 17.58 ns for Cs_(2)AgBiCl_(6)NCs.By adjusting the amount of Na^(+)incorporation,the band gap of Cs_(2)AgBiCl_(6)NCs can be significantly tuned from~2.90 eV to~3.50 eV.Furthermore,the temperature-dependent photoluminescence spectra indicated that the Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs possessed higher longitudinal optical phonon energy and exciton binding energy compared to Cs_(2)AgBiCl_(6)NCs.This suggested that there were strong exciton-phonon interactions during exciton recombination,a reduced probability of non-radiative processes,and excellent thermal stability.It offers a promising strategy for improving the optical properties of lead-free double perovskite NCs,and have the potential to replace traditional lead halide perovskite NCs in future optoelectronic applications.展开更多
文摘The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ultra Soft Pseudo Potential (US-PP) process. The Rb2PbBr6 and Rb2PbCl6 are found to be a (Г-Г) semiconductors with energy gaps of 0.275 and 1.142 eV, respectively making them promising photovoltaic materials. The metallic behavior of the materials for Rb2BX6 (B = Tc, W, Ir, Ta, Mn, Sb, Mo) has been confirmed showing the attendance of conducting lineaments. The dielectric function is found to be large close to the ultraviolet districts (3.10 - 4.13 eV). The extinction coefficient of the Rb2BX6 has the ability to be used for implements. The band structures and density of states ensure the magnetic semiconductors’ nature of the Rb2Mn (Cl, Br)6 perovskites. The total calculated magnetic moment of Rb2MnCl6 and Rb2MnB6 is 3.00μβ. Advanced spintronic technology requires room-temperature ferromagnetism. The present work confirms that, bromine and chlorine-founded double perovskites are extremely attractive for photovoltaic and optoelectronic devices.
基金Funded by the National Natural Science Foundation of China (No.51772228)the Open Fund of Sanya Science and Education Innovation Park (No.2022KF0008)。
文摘Inorganic halide double perovskites A_(2)B'B"X_(6) have gained significant interests for their diverse composition,stable physicochemical properties,and potential for photoelectric applications.The influences of trivalent and monovalent cations on the formation energy,decomposition energy,electronic structure and optical properties of cesium-based lead-free Cs^(+)_(2)B'B"Br_(6) (B'=Na^(+),In^(+)Cu^(+),or Ag^(+);B"=Bi^(3),Sb^(3+),In^(3+)) are systematically studied.In view of the analysis and results of the selected double perovskites,for the double perovskites with different B-site trivalent cation,the band gap increases in the order of Cs_(2)AgInBr_(6),Cs_(2)AgSbBr_(6) and Cs_(2)AgBiBr_(6),with Cs_(2)AgBiBr_(6) possessing the highest thermodynamic stability.Therefore,the Bi-based perovskites are further studied to elucidate the effect of monovalent cation on their stability and electronics.Results show that the thermodynamic stability rises in the sequence of Cs_(2)NaBiBr_(6),Cs_(2)InBiBr_(6),Cs_(2)AgBiBr_(6) and Cs_(2)CuBiBr_(6).Notably,Cs_(2)CuBiBr_(6) exhibits a relatively narrow and appropriate band gap of 1.4634 eV,together with the highest absorption coefficient than other compounds,suggesting that Cs_(2)CuBiBr_(6) is a promising light absorbing material that can be further explored experimentally and be applied to optoelectronic devices.Our research offers theoretical backing for the potential optoelectronic application of cesium-based lead-free halide double perovskites in solar energy conversion.
基金the National Natural Science Foundation of China (22175180, 21975260)。
文摘Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these materials under moist conditions pose significant barriers to large-scale production.To overcome these limitations,researchers have proposed mixed-valence double perovskites,where Cs_(2)Au~ⅠAu~ⅢI_6 is a particularly effective absorber due to its suitable band gap and high absorptance efficiency.To further extend the scope of these lead-free materials,we varied the trivalent gold ion and halogen anion in Cs_(2)Au~ⅠAu~ⅢI_6,resulting in 18 new structures with unique properties.Further,using first-principles calculations and elimination criteria,we identified four materials with ideal band gaps,small effective carrier mass,and strong anisotropic optical properties.According to theoretical modeling,Cs_(2)AuSbCl_6,Cs_(2)AuInCl_6,and Cs_(2)AuBiCl_6 are potential candidates for solar cell absorbers,with a spectroscopic limited maximum efficiency(SLME) of approximately 30% in a 0.25 μm-thick film.These three compounds have not been previously reported,and therefore,our work provides new insights into potential materials for solar energy conversion.We aim for this theoretical exploration of novel perovskites to guide future experiments and accelerate the development of high-performance photovoltaic devices.
基金the financial supports from the National Natural Science Foundation of China(No.20703042)National Basic Research Program of China(No.2010CB923300)+1 种基金USTC-NSRL Association Funding(No.KY2060030009)the Fundamental Research Funds for the Central Universities
文摘The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.
基金the funding support from the National Key Research and Development Program of China(Grant 2016YFB0700700)National Natural Science Foundation of China(Grants 11674237,11974257)+1 种基金Priority Academic program Development of Jiangsu Higher Education Institutions(PAPD)Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,China。
文摘Oxide double perovskites A2 B’B"O6 are a class of emerging materials in the fields of optoelectronics and catalysis.Due to the chemical flexibilities of perovskite structures,there are multiple elemental combinations of cations A,B’,and B",which leading to tremendous candidates.In this study,we comprehensively screened stable oxide double perovskite A2 B’B"O6 from a pool of 2,018 perovskite candidates using a high-throughput computational approach.By considering a tolerance factor(t)-octahedral factor(μ) phase diagram,138 candidates with Fm 3 m, P21/c,and R3 c phases were selected and systematically studied via first-principles calculations based on density functional theory.The screening procedure finally predicted the existence of 21 stable perovskites,and 14 among them have never been reported.Verification with existing experimental results demonstrates that the prediction accuracy for perovskite formability is approximately 90%.The predicted oxide double perovskites exhibit quasi-direct bandgaps ranging from 0 to 4.4 eV with a significantly small direct-indirect bandgap difference,balanced electron and hole effective masses,and strong optical absorptions.The newly predicted oxide double perovskites may enlarge the pool of material candidates for applications in optoelectronics and photocatalysis.This study provides a route for computational screening of novel perovskites for functional applications.
文摘We present a theoretical study of the magnetic properties of the lanthanum copper manganate double perovskite La2CuMnO6 ceramic,using Monte Carlo simulations.We analyze and discuss the ground state phase diagrams in different planes to show the effect of every physical parameter.Based on the Monte Carlo simulations,which combine Metropolis algorithm and Ising model,we explore the thermal behavior of the total magnetization and susceptibility.We also present and discuss the influence of physical parameters such as the external magnetic field,the exchange coupling interactions between magnetic atoms,and the exchange magnetic field on the magnetization of the system.Moreover,the critical temperature of the system is about Tc=70 K,in agreement with the experimental value.Finally,the hysteresis loops of La2CuMnO6 are discussed.
基金Supported by the National Natural Science Foundation of China(Nos.20631010,90922034 and 20771042)
文摘A series of double perovskites RSrMnFeO6(R=La, Pr, Nd, Sm) was synthesized under mild hydrothermal conditions. Crystal growths of the samples were sensitive to alkalinity, temperature, filling fraction, and composition of initial reaction mixture. The desired series of compounds belongs to the class of AA'BB'O6 perovskites with a random distribution of Mn and Fe atoms over the B-cation sub-lattice. Their structures show the distorted orthorhombic symmetry with space group Pnma. The shapes and sizes of the crystals were analyzed on a Rigaku JSM-6700F by scanning electron microscopy. Analysis done by XPS, Mossbauer spectroscopy and iodometric titration reveals that Mn and Fe ions have +4 and +3 oxidation states, respectively.
基金Supported by the National Natural Science Foundation of China(Nos.90922034, 20771042)
文摘A double perovskite oxide Ba2FeSbO6 was hydrothermally synthesized and structurally characterized by X-ray diffraction. This solid compound shows a single phase and has a trigonal structure with space group R3 ?m and cell parameters of a=0.57261 nm and c=1.40244 nm. The dielectric constant and loss tangent of the solid measured in a frequency range from 100 Hz to 1 MHz at temperatures from 313 K to 513 K reveal a relaxation process of frequency dependence of the real part(ε') of dielectric constant and dielectric loss tan?. The frequency dependence of electrical property led to the framework of conductivity and electric modulus formalisms. The scaling behavior of imaginary part of electric modulus suggests that the relaxation describes the single mechanism at various temperatures. The variation tendency of the alternating current impedance indicates the thermally activated conduction process follows Jonsche's power law.
文摘The Ba2Zn1-xNixWO6 double perovskite oxides were synthesized using solid state reaction method. The effect of replacement of Zn<sup>2+</sup> with Ni<sup>2+</sup> cation on the structural properties was investigated by X-ray diffraction (XRD) at room temperature. From the X-ray diffraction and by means of standard Rietiveld method, the samples showed the same cubic crystal structure with (Fm-3m) space group and the crystallite size ranging from 71.91 nm to 148.71 nm. The unit cell volume was found to decrease as a result of the replacement, while there was no significant difference in the value of tolerance factor of the samples. This is may be due to the convergence of ionic radii of Ni<sup>2+</sup> and Zn<sup>2+</sup> cations. The Fourier Transform Infrared Spectroscopy (FTIR) was performed for the samples and the resultant characteristic absorption bands confirmed the double perovskite structure.
基金Supported by the National Natural Science Foundation of China under Grant No U1304110the Doctoral Science Foundation of Henan Normal University under Grant No 01026500109
文摘A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr2FeMo06 (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits I4/m symmetry. The cation order η of the sample increases to 98.9(2)% from 94.2(3)%, which is prepared by the traditional sol-gel method. The initial magnetization isotherm of the sample is detected at 300 K. Unit-cell magnetization for the current sample is 1.332 #s at 300 K, and the one for the traditional sol-gel method sample is 0.946#9. Unit-cell magnetization is enhanced to 40.80% by the quench-treatment technique. Quench treatment is an effective method of enhancing the Fe/Mo order and magnetic properties of double perovskite SFMO.
基金Project supported bythe National Natural Science Foundation of China (50073024 ,90101001) the Special Funds for MajorState Basic Research Projects (G1999064800) +1 种基金the Project fromthe Chinese Academy of Sciences (KJCX2-SW-H07) the In-ternational Collaboration Project from Changchun City ,China (04-03GH268)
文摘The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤ x ≤ 1 ). The compounds have a monoclinic structure (space group P21/n) and the cell volume expands monotonically with La doping. The Tc and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-x LaxMnMoO6 decreases only at low doping levels (x ≤0.2); while at high doping levels (0.8≤x ≤1), electrical resistivity tends to increase greatly. The resuits suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.
基金Project supported by the National Natural Science Foundation of China(Grant No.51501017)
文摘The structural, electronic, and magnetic properties of double perovskite Sr_2FeReO_6 containing eight different imperfections of FeReor ReFeantisites, Fe1–Re1 or Fe1–Re4 interchanges, V_(Fe), V_(Re), VOor V_(Sr) vacancies have been studied by using the first-principles projector augmented wave(PAW) within generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction(GGA+U). No obvious structural changes are observed for the imperfect Sr_2FeReO_6 containing FeReor ReFeantisites, Fe1–Re1 or Fe1–Re4 interchanges, or VSrvacancy defects. However, the six(eight) nearest oxygen neighbors of the vacancy move away from(close to) VFeor V_(Re)(VO) vacancies. The half-metallic(HM) character is maintained for the imperfect Sr_2FeReO_6 containing FeReor ReFeantisites, Fe1–Re4 interchange, V_(Fe),VO or V_(Sr) vacancies, while it vanishes when the Fe1–Re1 interchange or VRevacancy is presented. So the Fe1–Re1 interchange and the VRevacancy defects should be avoided to preserve the HM character of Sr_2FeReO_6 and thus usage in spintronic devices. In the FeReor ReFeantisites, Fe1–Re1 or Fe1–Re4 interchanges cases, the spin moments of the Fe(Re)cations situated on Re(Fe) antisites are in an antiferromagnetic coupling with those of the Fe(Re) cations on the regular sites. In the V_(Fe), V_(Re), VO, or V_(Sr) vacancies cases, a ferromagnetic coupling is obtained within each cation sublattice,while the two cation sublattices are coupled antiferromagnetically. The total magnetic moments μtot(μB/f.u.) of the imperfect Sr_2FeReO_6 containing eight different defects decrease in the sequence of VSrvacancy(3.50), VRevacancy(3.43),FeReantisite(2.74), VOvacancy(2.64), VFevacancy(2.51), ReFeantisite(2.29), Fe1–Re4 interchange(1.96), Fe1–Re1interchange(1.87), and the mechanisms of the saturation magnetization reduction have been analyzed.
文摘The ab initio generalized gradient approximation (GGA)+U study of multiferroic (La Bi )<sub>2</sub>FeCrO<sub>6</sub> in pnma structure and ferri-magnetic order, including Hubbard corrections ( eV) for transition metal/rare earth d-electrons with 20 atoms cell, shows optimum local magnetic moments of (Cr , Fe equal to (−2.56, 4.14) μB and an ideal spin-down band gap of 1.54 eV. Tuned-band gap La-substituted double oxide perovskites BFCO should exhibit enhanced visible-light absorption and carrier mobility, thus could be convenient light absorbers and then efficient alternatives to wide-gap chalcopyrite absorber-based solar cells failing to achieve highest power conversion efficiencies, and even compete with their metal-organic halide perovskites counterparts.
基金supported by the National Natural Science Foundation of China(Grant No.11864008)Guangxi Natural Science Foundation,China(Grant Nos.2018GXNSFAA138185,2018AD19200,and 2019GXNSFGA245006).
文摘Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double perovskite(DP)materials are promising candidates to resolve these issues.Based on the density functional theory,we explore the geometric stability,thermodynamic stability,mechanical stability,electronic structures,and optical properties of theCs_(2)B 0BiI_(6)(B 0=Li,Na and K)DP materials.By analyzing the tolerance factor and octahedral factor,we find the geometric stabilities ofCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs are better thanCs_(2)LiBiI_(6).By calculating the total energy,formation energy and decomposition energy,we propose that the most favorable structure ofCs_(2)B 0BiI_(6) is the orthorhombic phase,andCs_(2)LiBiI_(6) is less stable relative to the other two counterparts from an energetic viewpoint.Mechanical stability evaluations reveal that the orthorhombicCs_(2)LiBiI_(6) material is less stable relative to the isostructuralCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs.The mechanical property calculations indicate that theCs_(2)B 0BiI_(6) DPs possess good ductility,which can be used as flexible materials.Electronic structures and optical property calculations show that the orthorhombicCs_(2)B 0BiI_(6) DPs have suitable band gap values,weaker exciton binding energies,and excellent optical absorption performance in the visible-light range.Based on the above comprehensive assessments,we can conclude that the orthorhombic Cs_(2)NaBiI_(6) and Cs_(2)KBiI_(6) DPs with good stability are promising candidates for solar cell applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51172194 and 51172091)the Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0240)Jilin Province Science and Technology Development Program,China(Grant No.20130101023JC)
文摘Double perovskite oxide Sr2 Co Fe O6(SCFO) has been obtained using a high-pressure and high-temperature(HPHT)synthesis method. Valence states of Fe and Co and their distributions in SCFO were examined with X-ray photoelectron spectroscopy. The electric transport behavior of SCFO showed a semiconductor behavior that can be well described by Mott's law for variable-range hopping conduction. The structural stability of SCFO was investigated at pressures up to 31 GPa with no pressure-induced phase transition found. Bulk modulus B0 was determined to be 163(2) GPa by fitting the pressure–volume data to the Birch–Murnaghan equation of state.
基金financial support from Macao Science and Technology Development Fund,China(FDCT-0044/2020/A1,FDCT-091/2017/A2,FDCT-014/2017/AMJ)University of Macao Research Grant,China(MYRG2018-00148-IAPME,MYRG2018-00142-IAPME)from University of Macao+2 种基金the Natural Science Foundation of China,China(91733302,61935017)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(2019B121205002)Natural Science Foundation of Guangdong Province,China(2019A1515012186).
文摘Lead-free double perovskite Cs_(2)AgBiBr_(6) has gained increasing attention recently.However,the power conversion efficiency(PCE)of Cs_(2)AgBiBr_(6) perovskite solar cells(PSCs)is still low compared with their lead-based counterparts.Here,by using photoluminescence(PL),time-resolved photoluminescence(TRPL),and ultrafast transient absorption(TA)measurements,the unbalance between the electron and hole in diffusion and transfer,which limits the performance of the Cs_(2)AgBiBr_(6) PSCs,was further revealed.Considering this issue,a strategy of using the mesoporous TiO_(2) electron transport layer(ETL)to construct a bulk heterojunction in Cs_(2)AgBiBr_(6) PSCs was proposed.Consequently,the PCE had improved by over 24%comparing with that only used compact TiO_(2) ETL.Moreover,based on mesoporous TiO_(2),the unencapsulated Cs_(2)AgBiBr_(6) PSCs maintained 90%of their initial performance after approximately 1200 h of storage in a desiccator(humidity~30%).This work gives further understanding of Cs_(2)AgBiBr_(6) perovskite and demonstrates that a proper design of balancing the electron and hole diffusion can improve device performance.
文摘The structural, magnetic and electronic properties of the double perovskite Ba2SmNbO6 (for the simple cubic structure where no octahedral tilting exists anymore) are studied using the density functional theory within the generalized gradient approximation as well as taking into account the on-site Coulomb repulsive interaction. The total energy, the spin magnetic moment, the band structure and the density of states are calculated. The optimization of the lattice constants is 8.5173 A, which is in good agreement with the experimental value 8.5180 A. The calculations reveal that Ba2SmNbO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is 5.00μB/f.u. which comes mostly from the Sin3+ ion only. By analysis of the band structure, the compound exhibits the direct band gap material and half-metallic ferromagnetic nature with 100% spin-up polarization, which implies potential applications of this new lanthanide compound in magneto-electronic and spintronic devices.
基金Project supported by the National Natural Science Foundation of China(62104062)the China Postdoctoral Science Foundation(2021M701056)。
文摘Metal halide perovskites exhibit promising prospect in light-emitting diodes,solar cells,photodetectors and bioimaging.However,the workhorse of metal halide perovskites relies on toxicity lead element,which severely damages human body and environment.Among lead-free perovskites,Cs_(2)NaInCl_(6)double perovskite is one of the most promising candidates because of its great stability and easy synthesis,but suffers inadequate optical performance.Here,we doped Sb^(3+)and Sm^(3+)into Cs_(2)NaInCl_(6)nanocrystals by a hot injection method.Cs_(2)NaInCl_(6):Sb^(3+)exhibits blue emission at 447 nm.Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)nanocrystals simultaneously generate the blue emission of Sb^(3+)and the multiple emissions of Sm^(3+)at 565,602,650 and 710 nm.With the increase of Sm^(3+)feed ratio,the emission color of Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)gradually moves to cold white region at(0.27,0.28)in CIE chromaticity diagram and correlated color temperature of 11840 K.This work shows the potential application of Cs_(2)NaInCl_(6):Sm^(3+),Sb^(3+)nanocrystals as a single-component cold white emitter.
基金financially supported by National Natural Science Foundation of China(Nos.22125110,22205233,22193042,21833010,21921001,and U21A2069)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBSLY-SLH024)+3 种基金the National Postdoctoral Program for Innovative Talents(No.BX2021315)the National Key Research and Development Program of China(No.2019YFA0210402)the China Postdoctoral Science Fund(No.2022TQ0337)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR126)。
文摘Molecular dielectric switches constitute a type of intelligent materials that are highly coveted for their distinctive advantages of switchable dielectric responses,lightweight,and mechanical flexibility.Twodimensional(2D)hybrid perovskites have demonstrated excellent promise for assembling dielectric switches,in which the dynamic motions of organic moieties afford driving force to trigger switchable dielectric phase transition.Here,we successfully assembled a new lead-free hybrid double perovskite,(CHA)4Cu Bi Br8(1,CHA=cyclohexylammonium),adopting a typical 2D structural motif,which shows dielectric anisotropy and bistable behaviors during the reversible phase transition near T_(c)=378 K(the Curie temperature).That is,its dielectric constants could be switched and tuned between high-dielectric and low-dielectric states.Structure analyses reveal that the ordered-disordered transformation of the organic CHA+moiety and distortion of inorganic framework account for its phase transition.This result will stimulate further exploration of molecular dielectric switches in this 2D environmentally friendly family.
基金the support of the National Natural Science Foundation of China(No.21473051)the Natural Science Foundation of Heilongjiang Province(No.LH2019B014)Youth Science and Technology Innovation Team Project of Heilongjiang Province(No.2018-KYYWF-1593)。
文摘Lead-free double perovskite nanocrystals(NCs)have emerged as a promising candidate in the optical field,owing to their non-toxic,good moist heat and chemical stability.However,their poor optical properties limited their application.To improve the optical properties of lead-free double perovskite NCs,metal ion doping or alloying had been suggested as a promising strategy.Here,we prepared monodisperse,uniformly sized,cubic morphology of Cs_(2)AgBiCl_(6)NCs with different Na^(+)incorporation amounts via a simple hot-injection method.The Na^(+)incorporation broke the parity-forbidden transition by reducing the inversion symmetry of the electron wave function at the Ag site,which changed the parity of the self-trapped exciton wave function and thus allowed radiative recombination.As a result,the photoluminescence quantum yield(PLQY)of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs(12.1%)was higher than that of Cs_(2)AgBiCl_(6)NCs(2.4%),and the exciton lifetime of Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs increased to 36.98 ns from 17.58 ns for Cs_(2)AgBiCl_(6)NCs.By adjusting the amount of Na^(+)incorporation,the band gap of Cs_(2)AgBiCl_(6)NCs can be significantly tuned from~2.90 eV to~3.50 eV.Furthermore,the temperature-dependent photoluminescence spectra indicated that the Na^(+)-alloyed Cs_(2)AgBiCl_(6)NCs possessed higher longitudinal optical phonon energy and exciton binding energy compared to Cs_(2)AgBiCl_(6)NCs.This suggested that there were strong exciton-phonon interactions during exciton recombination,a reduced probability of non-radiative processes,and excellent thermal stability.It offers a promising strategy for improving the optical properties of lead-free double perovskite NCs,and have the potential to replace traditional lead halide perovskite NCs in future optoelectronic applications.