Double shoulder drill pipe joint(DSJ)is a novel thread structure which appears in recent years.Its strength reduced efficiently while the structure design is not appropriately,for the DSJ’s mechanical behaviors weren...Double shoulder drill pipe joint(DSJ)is a novel thread structure which appears in recent years.Its strength reduced efficiently while the structure design is not appropriately,for the DSJ’s mechanical behaviors weren’t well studied.In this paper a 3D whole structure finite element model of DSJ was established based on the Principle of Virtual Work,and validated the model’s computing results by experimental results.The authors analyzed the stress and strain distribution with the 3D whole structure finite element model’s computing results under torque moment,compression force,tension load,and bend moment.And then acquired the DSJ’s mechanical behaviors under each load.The research works of this paper refer accordance to recognize and design the DSJ.展开更多
基金This research is supported by Scientific Research Starting Project of SWPU(No.2017QHZ012)Major Project by Education Office of Sichuan Province(No.17ZA0418)+1 种基金supported by the Natural Science Fund for Outstanding Youth Science Fund(Grant No.51222406)Scientific Research Innovation Team Project of Sichuan Colleges and Universities(2017TD0014).
文摘Double shoulder drill pipe joint(DSJ)is a novel thread structure which appears in recent years.Its strength reduced efficiently while the structure design is not appropriately,for the DSJ’s mechanical behaviors weren’t well studied.In this paper a 3D whole structure finite element model of DSJ was established based on the Principle of Virtual Work,and validated the model’s computing results by experimental results.The authors analyzed the stress and strain distribution with the 3D whole structure finite element model’s computing results under torque moment,compression force,tension load,and bend moment.And then acquired the DSJ’s mechanical behaviors under each load.The research works of this paper refer accordance to recognize and design the DSJ.