We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh...We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning...By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.展开更多
In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of differ...This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders.展开更多
The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-...The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.展开更多
Lower efficiencies induce higher energy costs and pose a barrier to wave energy devices'commercial applications.Therefore,the efficiency enhancement of wave energy converters has received much attention in recent ...Lower efficiencies induce higher energy costs and pose a barrier to wave energy devices'commercial applications.Therefore,the efficiency enhancement of wave energy converters has received much attention in recent decades.The reported research presents the double snap-through mechanism applied to a hemispheric point absorber type wave energy converter(WEC)to improve the energy absorption perfomance.The double snap-through mechanism comprises four oblique springs mounted in an X-configuration.This provides the WEC with different dynamic stability behaviors depending on the particular geometric and physical parameters employed.The efficiency of these different WEC behaviors(linear,bistable,and tristable)was initially evaluated under the action of regular waves.The results for bistable or tristable responses indicated significant improvements in the WEC's energy capture efficiency.Furthermore,the WEC frequency bandwidth was shown to be significantly enlarged when the tristable mode was in operation.However,the corresponding tristable trajectory showed intra-well behavior in the middle potential well,which induced a more severe low-energy absorption when a small wave amplitude acted on the WEC compared to when the bistable WEC was employed.Nevertheless,positive effects were observed when appropriate initial conditions were imposed.The results also showed that for bistable or tristable responses,a suitable spring stiffness may cause the buoy to oscillate in high energy modes.展开更多
The equilibria and kinetic characteristics of a micelle mixed extractant system-D<sub>2</sub> EHPA-MPA(MPA-monoalkyl phosphoric acid with long carbon chain and micellization)in extractionof the Al<sup...The equilibria and kinetic characteristics of a micelle mixed extractant system-D<sub>2</sub> EHPA-MPA(MPA-monoalkyl phosphoric acid with long carbon chain and micellization)in extractionof the Al<sup>3+</sup>ions were studied.It was found that the system has double synergistic effects on theextraction of the Al<sup>3+</sup>ions.The compositions of the synergistic complexes were determined andthe synergistic reaction equations were obtained.展开更多
The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional....The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.展开更多
Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into t...Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.展开更多
To improve the ductility of a commercial Mg−rare earth alloy EV31A(Mg−3Nd−1.5Gd−0.3Zn−0.5Zr),a heat treatment method called double aging is explored,and its effect on mechanical properties and microstructure of the al...To improve the ductility of a commercial Mg−rare earth alloy EV31A(Mg−3Nd−1.5Gd−0.3Zn−0.5Zr),a heat treatment method called double aging is explored,and its effect on mechanical properties and microstructure of the alloy is studied.Ultimate strength and elongation of the alloy can be increased to 288 MPa and 6.6%by the optimum double aging process,compared to 273 MPa and 4.9%after single aging.Time consumption of the aging process is also significantly decreased from 16 h(single aging)to 2 h.HAADF-STEM characterization shows that the primary precipitate isβ'phase,which is similar toβ'phase in Mg−Nd binary alloy.By double aging,theβ'phase is finer and more densely distributed compared with single aging,with approximately double density and half size,which explains the improvement in strength and ductility.展开更多
The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance jo...The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively.The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem(LCP) algorithm and the trial-and-error algorithm.Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.展开更多
Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios. The evolutions of { 100}, { 111} and Goss face texture during double rolling were investigated by comparin...Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios. The evolutions of { 100}, { 111} and Goss face texture during double rolling were investigated by comparing the orientation distribution function (ODF) of the double rolled sample with that of the single rolled one. The double cold rolling texture is characterized by a higher γ-texture and a lower α-texture, and the { 111}〈112〉 component is improved remarkably. Based on the TEM observation and mechanical properties test, it is found that the reduction ratio assignment significantly affects the texture variation, as-annealing microstructures, and properties of the double cold rolled samples. These results may provide a theoretical guide for the industrial production of double cold rolled IF steel.展开更多
In order to analyze the kinematic performances of elliptic-gear & eccentric slider-crank & uniform-pitch screw weft-insertion mechanism proposed by us,kinematic mathematic models of the mechanism were establis...In order to analyze the kinematic performances of elliptic-gear & eccentric slider-crank & uniform-pitch screw weft-insertion mechanism proposed by us,kinematic mathematic models of the mechanism were established,and an aided analytic software was compiled.Influences of some important parameters on the kinematic characteristics of the mechanism were analyzed.A group of preferable parameters were obtained according to the software and some requirements.Comparisons of kinematic performances were made between the proposed mechanism and the variable-pitch screw insertion mechanism of C401 rapier loom manufactured by Vamatex Corp in Italy.The results show that the proposed mechanism can meet the requirements of inserting wefts.展开更多
A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank m...A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank mechanism whose crank rotates at a constant angular velocity,the kinematic parameters of the slide,connecting rod and crank were formulated approximately. On the basis of the results above,three inertia forces and the input moment in the mechanism during its idle running were investigated and formulated by dynamic analysis. A verification experiment was performed on a slider-crank mechanism at a high-speed press machine. The forces derived from the established formulas were compared respectively with those obtained by the ADAMS software and the classical method of connecting rod mass substitution. It was experimentally found that the proposed formulas have an improved performance over related earlier techniques. By use of these results,a 1 000 kN 1 250 rpm four-point high-speed press machine was designed and manufactured. The slide of this press is driven by four sets of slider-crank mechanisms with symmetrical layout and opposite rotation directions to counterbalance the horizontal inertia forces. Four eccentric counterbalance blocks were designed to counterbalance the vertical force after their mass and equivalent eccentric radius were formulated. The high-speed press machine designed by the proposed counterbalance method has worked with satisfactory performance and good dynamic balance for more than four years in practical production.展开更多
This paper investigates a double auction-based peer-to-peer(P2P)energy trading market for a community of renewable prosumers with private information on reservation price and quantity of energy to be traded.A novel co...This paper investigates a double auction-based peer-to-peer(P2P)energy trading market for a community of renewable prosumers with private information on reservation price and quantity of energy to be traded.A novel competition padding auction(CPA)mechanism for P2P energy trading is proposed to address the budget deficit problem while holding the advantages of the widely-used Vickrey-Clarke-Groves mechanism.To illustrate the theoretical properties of the CPA mechanism,the sufficient conditions are identified for a truth-telling equilibrium with a budget surplus to exist,while further proving its asymptotical economic efficiency.In addition,the CPA mechanism is implemented through consortium blockchain smart contracts to create safer,faster,and larger P2P energy trading markets.The proposed mechanism is embedded into blockchain consensus protocols for high consensus efficiency,and the budget surplus of the CPA mechanism motivates the prosumers to manage the blockchain.Case studies are carried out to show the effectiveness of the proposed method.展开更多
We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with...We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with an additional mechanical resonator and the additional mechanical resonator can be driven by a weak external coherently mechanical driving field.We show that both the intensity and the phase of the external mechanical driving field can control the propagation of the probe field, including changing the transmission spectrum from double windows to a single-window.Our study also provides an effective way to generate intensity-controllable, narrow-bandwidth transmission spectra, with the probe field modulated from excessive opacity to remarkable amplification.展开更多
We present a mechanism for double transparency in an optomechanical system. This mechanism is based on the coupling of a moving cavity mirror to a second mechanical oscillator. Due to the purely mechanical coupling an...We present a mechanism for double transparency in an optomechanical system. This mechanism is based on the coupling of a moving cavity mirror to a second mechanical oscillator. Due to the purely mechanical coupling and the radiation pressure, three pathways are established for excitations of the probe photons into the cavity photons. Destructive interference occurs at two different frequencies, leading to double transparency to the probe field, It is the coupling strength between the mechanical oscillators that determines the locations of the transparency windows. Moreover, the normal splitting appears for the generated Stokes field and the four-wave mixing process is inhibited on resonance.展开更多
基金Funded by the National Natural Science Foundation of China(No.51873167)the National Innovation and Entrepreneurship Training Program for College Students(No.226801001)。
文摘We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
基金funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+1 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Central Leading Local Science and Technology Development Fund Project of Wuzhou(No.202201001).
文摘By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
文摘This paper investigates the behavior and the failure mechanism of a double deck bridge constructed in China through nonlinear time history analysis. A parametric study was conducted to evaluate the influence of different structural characteristics on the behavior of the double deck bridge under transverse seismic motions, and to detect the effect of bi- directional loading on the seismic response of this type of bridge. The results showed that some characteristics, such as the variable lateral stiffness, the foundation modelling, and the longitudinal reinforcement ratio of the upper and lower columns of the bridge pier bents have a major impact on the double deck bridge response and its failure mechanism under transverse seismic motions. It was found that the soft story failure mechanism :is not unique to the double deck bridge and its occurrence is related to some conditions and structural characteristics of the bridge structure. The analysis also showed that the seismic vulnerability of the double deck bridge under bi-directional loading: was severely increased compared to the bridge response under unidirectional transverse loading, and out-of-phase movements were triggered between adjacent girders.
基金Supported by Major National Basic Research Program of China(973Program,Grant No.2011CB013400-05)PhD Programs Foundation of Ministry of Education of China(Grant No.20110191110005)
文摘The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.
基金supported by the China Scholarship Council under Grant No.201600090258the National Key Research and Development Program of China under Grant No.2016YFC0303700the 111 Project under Grant No.B18054。
文摘Lower efficiencies induce higher energy costs and pose a barrier to wave energy devices'commercial applications.Therefore,the efficiency enhancement of wave energy converters has received much attention in recent decades.The reported research presents the double snap-through mechanism applied to a hemispheric point absorber type wave energy converter(WEC)to improve the energy absorption perfomance.The double snap-through mechanism comprises four oblique springs mounted in an X-configuration.This provides the WEC with different dynamic stability behaviors depending on the particular geometric and physical parameters employed.The efficiency of these different WEC behaviors(linear,bistable,and tristable)was initially evaluated under the action of regular waves.The results for bistable or tristable responses indicated significant improvements in the WEC's energy capture efficiency.Furthermore,the WEC frequency bandwidth was shown to be significantly enlarged when the tristable mode was in operation.However,the corresponding tristable trajectory showed intra-well behavior in the middle potential well,which induced a more severe low-energy absorption when a small wave amplitude acted on the WEC compared to when the bistable WEC was employed.Nevertheless,positive effects were observed when appropriate initial conditions were imposed.The results also showed that for bistable or tristable responses,a suitable spring stiffness may cause the buoy to oscillate in high energy modes.
基金Supported by the National Natural Science foundation of China
文摘The equilibria and kinetic characteristics of a micelle mixed extractant system-D<sub>2</sub> EHPA-MPA(MPA-monoalkyl phosphoric acid with long carbon chain and micellization)in extractionof the Al<sup>3+</sup>ions were studied.It was found that the system has double synergistic effects on theextraction of the Al<sup>3+</sup>ions.The compositions of the synergistic complexes were determined andthe synergistic reaction equations were obtained.
文摘The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.
基金supported by the National Natural Science Foundation of China (No.51273189)the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05016),the National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2016ZX05046)
文摘Double network(DN)hydrogels as one kind of tough gels have attracted extensive at-tention for their potential applications in biomedical and load-bearing fields.Herein,we import more functions like shape memory into the conventional tough DN hydro-gel system.We synthesize the PEG-PDAC/P(AAm-co-AAc)DN hydrogels,of which the first network is a well-defined PEG(polyethylene glycol)network loaded with PDAC(poly(acryloyloxyethyltrimethyl ammonium chloride))strands,while the second network is formed by copolymerizing AAm(acrylamide)with AAc(acrylic acid)and cross-linker MBAA(N;N′-methylenebisacrylamide).The PEG-PDAC/P(AAm-co-AAc)DN gels exhibits high mechanical strength.The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m^3,respectively.Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network,the PEG-PDAC/P(AAm-co-AAc)DN hydrogels use P(AAm-co-AAc),a weak polyelectrolyte,as the second network.The AAc units serve as the coordination points with Fe^3+ions and physically crosslink the second network,which realizes the shape memory property activated by the reducing ability of ascorbic acid.Our results indicate that the high mechanical strength and shape memory properties,probably the two most important characters related to the potential application of the hydrogels,can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.
基金This work was supported by the National Natural Science Foundation of China(No.51825101).
文摘To improve the ductility of a commercial Mg−rare earth alloy EV31A(Mg−3Nd−1.5Gd−0.3Zn−0.5Zr),a heat treatment method called double aging is explored,and its effect on mechanical properties and microstructure of the alloy is studied.Ultimate strength and elongation of the alloy can be increased to 288 MPa and 6.6%by the optimum double aging process,compared to 273 MPa and 4.9%after single aging.Time consumption of the aging process is also significantly decreased from 16 h(single aging)to 2 h.HAADF-STEM characterization shows that the primary precipitate isβ'phase,which is similar toβ'phase in Mg−Nd binary alloy.By double aging,theβ'phase is finer and more densely distributed compared with single aging,with approximately double density and half size,which explains the improvement in strength and ductility.
基金Project supported by the National Natural Science Foundation of China(No.11772021)
文摘The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively.The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem(LCP) algorithm and the trial-and-error algorithm.Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.
文摘Single cold rolling and double cold rolling were applied to hot rolled strips with different reduction ratios. The evolutions of { 100}, { 111} and Goss face texture during double rolling were investigated by comparing the orientation distribution function (ODF) of the double rolled sample with that of the single rolled one. The double cold rolling texture is characterized by a higher γ-texture and a lower α-texture, and the { 111}〈112〉 component is improved remarkably. Based on the TEM observation and mechanical properties test, it is found that the reduction ratio assignment significantly affects the texture variation, as-annealing microstructures, and properties of the double cold rolled samples. These results may provide a theoretical guide for the industrial production of double cold rolled IF steel.
基金National Natural Science Foundation of China(No.50875243)Zhejiang Technique Innovation Group of Modern Textile Machinery,China(No.2009R50018)Foundation of New Textile Research & Development Emphasised Laboratory of Zhejiang Province,China(No.2009FZD004)
文摘In order to analyze the kinematic performances of elliptic-gear & eccentric slider-crank & uniform-pitch screw weft-insertion mechanism proposed by us,kinematic mathematic models of the mechanism were established,and an aided analytic software was compiled.Influences of some important parameters on the kinematic characteristics of the mechanism were analyzed.A group of preferable parameters were obtained according to the software and some requirements.Comparisons of kinematic performances were made between the proposed mechanism and the variable-pitch screw insertion mechanism of C401 rapier loom manufactured by Vamatex Corp in Italy.The results show that the proposed mechanism can meet the requirements of inserting wefts.
基金supported by the National Natural Science Foundation of China (No.50575175)
文摘A new method to calculate and counterbalance the inertia force of slider-crank mechanisms in high-speed mechanical presses was put forward. By analyzing the kinematic characteristics of a center-located slider-crank mechanism whose crank rotates at a constant angular velocity,the kinematic parameters of the slide,connecting rod and crank were formulated approximately. On the basis of the results above,three inertia forces and the input moment in the mechanism during its idle running were investigated and formulated by dynamic analysis. A verification experiment was performed on a slider-crank mechanism at a high-speed press machine. The forces derived from the established formulas were compared respectively with those obtained by the ADAMS software and the classical method of connecting rod mass substitution. It was experimentally found that the proposed formulas have an improved performance over related earlier techniques. By use of these results,a 1 000 kN 1 250 rpm four-point high-speed press machine was designed and manufactured. The slide of this press is driven by four sets of slider-crank mechanisms with symmetrical layout and opposite rotation directions to counterbalance the horizontal inertia forces. Four eccentric counterbalance blocks were designed to counterbalance the vertical force after their mass and equivalent eccentric radius were formulated. The high-speed press machine designed by the proposed counterbalance method has worked with satisfactory performance and good dynamic balance for more than four years in practical production.
基金supported by the National Natural Science Foundation of China(No.52207108),and by the Science and Technology Project of State Grid Corporation of China(No.1400202099523 A0000).
文摘This paper investigates a double auction-based peer-to-peer(P2P)energy trading market for a community of renewable prosumers with private information on reservation price and quantity of energy to be traded.A novel competition padding auction(CPA)mechanism for P2P energy trading is proposed to address the budget deficit problem while holding the advantages of the widely-used Vickrey-Clarke-Groves mechanism.To illustrate the theoretical properties of the CPA mechanism,the sufficient conditions are identified for a truth-telling equilibrium with a budget surplus to exist,while further proving its asymptotical economic efficiency.In addition,the CPA mechanism is implemented through consortium blockchain smart contracts to create safer,faster,and larger P2P energy trading markets.The proposed mechanism is embedded into blockchain consensus protocols for high consensus efficiency,and the budget surplus of the CPA mechanism motivates the prosumers to manage the blockchain.Case studies are carried out to show the effectiveness of the proposed method.
基金Project supported by the Strategic Priority Research Program of China(Grant No.XDB01010200)the National Natural Science Foundation of China(Grant Nos.61605225,11674337,and 11547035)Natural Science Foundation of Shanghai,China(Grant No.16ZR1448400)
文摘We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with an additional mechanical resonator and the additional mechanical resonator can be driven by a weak external coherently mechanical driving field.We show that both the intensity and the phase of the external mechanical driving field can control the propagation of the probe field, including changing the transmission spectrum from double windows to a single-window.Our study also provides an effective way to generate intensity-controllable, narrow-bandwidth transmission spectra, with the probe field modulated from excessive opacity to remarkable amplification.
基金supported by the National Natural Science Foundation of China(Grant Nos.61178021,11474118,and 11204099)the National Basic Research Program of China(Grant No.2012CB921604)
文摘We present a mechanism for double transparency in an optomechanical system. This mechanism is based on the coupling of a moving cavity mirror to a second mechanical oscillator. Due to the purely mechanical coupling and the radiation pressure, three pathways are established for excitations of the probe photons into the cavity photons. Destructive interference occurs at two different frequencies, leading to double transparency to the probe field, It is the coupling strength between the mechanical oscillators that determines the locations of the transparency windows. Moreover, the normal splitting appears for the generated Stokes field and the four-wave mixing process is inhibited on resonance.