Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and...Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and bring resistance. Double sail can effectively reduce the center of wind pressure and heeling moment. In order to study the effect of distance between two sails, airfoil and attack angle on the total lift coefficient of double sail propulsion system, pressure coefficient distribution and lift coefficient calculation model have been established based on vortex panel method. By using the basic finite solution, the fluid dynamic forces on the two-dimensional sails are computed.The results show that, the distance in the range of 0 to 1 time chord length, when using the same airfoil in the fore and aft sail, the total lift coefficient of the double sail increases with the increase of distance, finally reaches a stable value in the range of one to three times chord length. Lift coefficients of thicker airfoils are more sensitive to the change of distance. The thicker the airfoil, the longer distance is required of the total lift coefficient toward stable.When different airfoils are adopted in fore and aft sail, the total lift coefficient increases with the increase of the thickness of aft sail. The smaller the thickness difference is, the more sensitive to the distance change the lift coefficient is. The thinner the fore sail is, the lower the influence will be on the lift coefficient of aft sail.展开更多
Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative st...Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative storage spaces.Generally,these environments do not have workable digital models and 3 D representations are impractical.Methods The current investigation introduces the use of cutting edge laser scanning technology to convert real environments into virtualized versions of the construction sites or plants in the form of point clouds.The challenge is in dealing with the large point cloud datasets from the multiple scans needed to produce a complete virtualized model.The tower crane is also virtualized for the purpose of path planning.A parallelized genetic algorithm is employed to achieve intelligent path planning for the lifting task performed by tower cranes in complicated environments taking advantage of graphics processing unit technology,which has high computing performance yet low cost.Results Optimal lifting paths are generate d in several seconds.展开更多
The aim of this article is to summarize the relationship between double Ore extensions and iterated Ore extensions, and mainly describe the lifting of properties from an algebra A to a(right) double Ore extension B of...The aim of this article is to summarize the relationship between double Ore extensions and iterated Ore extensions, and mainly describe the lifting of properties from an algebra A to a(right) double Ore extension B of A which can not be presented as iterated Ore extensions.展开更多
基金financially supported by the JIANG Xinsong Innovation Fund(Grant No.Y8F7010701)
文摘Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and bring resistance. Double sail can effectively reduce the center of wind pressure and heeling moment. In order to study the effect of distance between two sails, airfoil and attack angle on the total lift coefficient of double sail propulsion system, pressure coefficient distribution and lift coefficient calculation model have been established based on vortex panel method. By using the basic finite solution, the fluid dynamic forces on the two-dimensional sails are computed.The results show that, the distance in the range of 0 to 1 time chord length, when using the same airfoil in the fore and aft sail, the total lift coefficient of the double sail increases with the increase of distance, finally reaches a stable value in the range of one to three times chord length. Lift coefficients of thicker airfoils are more sensitive to the change of distance. The thicker the airfoil, the longer distance is required of the total lift coefficient toward stable.When different airfoils are adopted in fore and aft sail, the total lift coefficient increases with the increase of the thickness of aft sail. The smaller the thickness difference is, the more sensitive to the distance change the lift coefficient is. The thinner the fore sail is, the lower the influence will be on the lift coefficient of aft sail.
文摘Background This paper presents an intelligent path planner for lifting tasks by tower cranes in highly complex environments,such as old industrial plants that were built many decades ago and sites used as tentative storage spaces.Generally,these environments do not have workable digital models and 3 D representations are impractical.Methods The current investigation introduces the use of cutting edge laser scanning technology to convert real environments into virtualized versions of the construction sites or plants in the form of point clouds.The challenge is in dealing with the large point cloud datasets from the multiple scans needed to produce a complete virtualized model.The tower crane is also virtualized for the purpose of path planning.A parallelized genetic algorithm is employed to achieve intelligent path planning for the lifting task performed by tower cranes in complicated environments taking advantage of graphics processing unit technology,which has high computing performance yet low cost.Results Optimal lifting paths are generate d in several seconds.
文摘The aim of this article is to summarize the relationship between double Ore extensions and iterated Ore extensions, and mainly describe the lifting of properties from an algebra A to a(right) double Ore extension B of A which can not be presented as iterated Ore extensions.