Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and low...Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.展开更多
An investigation was carried out in the Huanghai Sea and the East China Sea to study the quantitative relationship between the abundance of flagellates and the density of suspended particles in the summer of 2001. The...An investigation was carried out in the Huanghai Sea and the East China Sea to study the quantitative relationship between the abundance of flagellates and the density of suspended particles in the summer of 2001. The results show that the abundance of flagellates varies from 44-12 600 cell/cm^3, and flagellates sometimes constitutes a significant part of suspended particles. The size-spectra of suspended particles can be divided into four categories: flat spectrum, humped spectrum, plankton spectrum and mixed spectrum. In general, the abundance of flagellates varies in proportion to the density of suspended particles. However, their quantitative relations reveal different characteristics in the seawater samples of different types of particle-size spectrum. This is only a preliminary study of the quantitative relationship between flagellates and suspended particles, which might lead to a potential convenient approach to the estimation of flagellate abundance in the sea.展开更多
We develop the discrete derivatives representation method (DDR) to find the physical structures of the Schr?dinger equation in which the interpolation polynomial of Bernstein has been used. In this paper the particle ...We develop the discrete derivatives representation method (DDR) to find the physical structures of the Schr?dinger equation in which the interpolation polynomial of Bernstein has been used. In this paper the particle swarm optimization (PSO for short) has been suggested as a means to improve qualitatively the solu-tions. This approach is carefully handled and tested with a numerical example.展开更多
The purpose of this research is to apply the Einstein’s principle of relativity to solve the mind-brain problem and to generate all Standard Model Particle masses. Our approach is somewhat analogous to the dualistic ...The purpose of this research is to apply the Einstein’s principle of relativity to solve the mind-brain problem and to generate all Standard Model Particle masses. Our approach is somewhat analogous to the dualistic idea of Descartes. Instead of a pineal gland, wherein the brain interacts with the mind, we propose during the developmental stages of the human fetus the tiny brain begins to communicate with the smallest structures of spacetime. This interaction occurs as the fetus brain begins to emit thermodynamic low heat energies, which are then absorbed into the smallest structures of spacetime saturating the interstices of the fetus brain. Think of these heat-energies like Morse code instructions. Since these kinds of interaction involve spacetime, with brain matter-energy, and that our main guiding principle is that of relativity, our research resulted in a general relativistic wave equation, wherein the n-valued heat-energies emitted by the brain-field-matrix <em style="white-space:normal;">B</em><sub style="white-space:normal;"><span style="white-space:nowrap;"><em>μ</em></span><em></em><em>v</em></sub>, is identified as the energy momentum tensor of general relativity. The spacetime mind-matrix (<em style="white-space:normal;">M</em><sub style="white-space:normal;"><em><em>μ</em><em></em><em>v</em></em></sub>) is likewise identified as the Riemannian curvature matrix. Together they form a general relativistic expression given by: <em>M</em><sub><em><span style="font-size:10px;"><em>μ</em></span><em style="font-size:10px;white-space:normal;"></em><em style="font-size:10px;white-space:normal;">v</em><span style="font-size:10px;white-space:normal;"> </span></em></sub>+<em>P</em><sub><em><span style="font-size:10px;"><em>μ</em></span><em style="font-size:10px;white-space:normal;"></em><em style="font-size:10px;white-space:normal;">v</em><span style="font-size:10px;white-space:normal;"> </span></em></sub><em>M=cB<sub><span style="font-size:10px;"><em>μ</em></span><em style="font-size:10px;white-space:normal;"></em><em style="font-size:10px;white-space:normal;">v</em></sub></em>. Here <em>c</em> represents the combined general relativistic constants. By detaching the energy momentum tensor <em>B</em><sub><span style="white-space:nowrap;"><em>μ</em></span><em></em><em>v</em> </sub>from the general relativistic wave equation, converting it to an operator, and then combining the time component with the Bose-Einstein equation, resulted in a brain temperature function capable of calculating precise heat-energies emitted by the brain during the formation of the fetus mind. As the fetus brain becomes more complex, it further organizes the mind. At some point self-aware consciousness is evoked within the spacetime mind. The same equation (<em>relabeled to distinguish it from the mind-brain equation</em>) can be applied to generate all Standard Model Particle masses.展开更多
The real-time retrieval of submicron aerosol size distributions is of major interest for applications. Based on the Mie theory,the spectral extinction method offers a simple measurement principle and a convenient opti...The real-time retrieval of submicron aerosol size distributions is of major interest for applications. Based on the Mie theory,the spectral extinction method offers a simple measurement principle and a convenient optical arrangement. In contrast to the relative simplicity of the experimental measurement the retrieval of the particles size distribution and particle concentration from the spectral extinction method is difficult. Mie scattering Equation is a Fredholm Integral Equation of the First Kind. This paper develops a hybrid iterative model-dependent algorithm for on-line particle sizing from extinction spectra which is both computationally efficient and accurate. Applying the refined Mie diagnostic iterative procedures within some candidate solutions can identify the unique result accurately and rapidly enough for real time measurement. With the addition of added Gaussian noise,an average tolerance up to 5% of noise level is kept for particle size from submicron to micrometer under moderate polydispersity.展开更多
The pseudorapidity spectra of fast particles (with β 〉 0.7) produced in Au (at 11.6 A GeV) and Pb (at 158 A GeV) induced collisions with emulsion (Em) nuclei contain some visual plateaus and shoulders. The p...The pseudorapidity spectra of fast particles (with β 〉 0.7) produced in Au (at 11.6 A GeV) and Pb (at 158 A GeV) induced collisions with emulsion (Em) nuclei contain some visual plateaus and shoulders. The plateau is wider for Pb+Em reactions compared with the Au+Em ones. The existence of a plateau is expected for parton models. The Fourier transformation and maximum entropy methods were used to get additional information about the plateaus. The dependence of the plateaus on the centrality of the collisions was also studied using the number of g-particles to fix centrality. It shows that the maximum entropy method could confirm the existence of the plateau and the shoulder on distributions.展开更多
文摘Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.
文摘An investigation was carried out in the Huanghai Sea and the East China Sea to study the quantitative relationship between the abundance of flagellates and the density of suspended particles in the summer of 2001. The results show that the abundance of flagellates varies from 44-12 600 cell/cm^3, and flagellates sometimes constitutes a significant part of suspended particles. The size-spectra of suspended particles can be divided into four categories: flat spectrum, humped spectrum, plankton spectrum and mixed spectrum. In general, the abundance of flagellates varies in proportion to the density of suspended particles. However, their quantitative relations reveal different characteristics in the seawater samples of different types of particle-size spectrum. This is only a preliminary study of the quantitative relationship between flagellates and suspended particles, which might lead to a potential convenient approach to the estimation of flagellate abundance in the sea.
文摘We develop the discrete derivatives representation method (DDR) to find the physical structures of the Schr?dinger equation in which the interpolation polynomial of Bernstein has been used. In this paper the particle swarm optimization (PSO for short) has been suggested as a means to improve qualitatively the solu-tions. This approach is carefully handled and tested with a numerical example.
文摘The purpose of this research is to apply the Einstein’s principle of relativity to solve the mind-brain problem and to generate all Standard Model Particle masses. Our approach is somewhat analogous to the dualistic idea of Descartes. Instead of a pineal gland, wherein the brain interacts with the mind, we propose during the developmental stages of the human fetus the tiny brain begins to communicate with the smallest structures of spacetime. This interaction occurs as the fetus brain begins to emit thermodynamic low heat energies, which are then absorbed into the smallest structures of spacetime saturating the interstices of the fetus brain. Think of these heat-energies like Morse code instructions. Since these kinds of interaction involve spacetime, with brain matter-energy, and that our main guiding principle is that of relativity, our research resulted in a general relativistic wave equation, wherein the n-valued heat-energies emitted by the brain-field-matrix <em style="white-space:normal;">B</em><sub style="white-space:normal;"><span style="white-space:nowrap;"><em>μ</em></span><em></em><em>v</em></sub>, is identified as the energy momentum tensor of general relativity. The spacetime mind-matrix (<em style="white-space:normal;">M</em><sub style="white-space:normal;"><em><em>μ</em><em></em><em>v</em></em></sub>) is likewise identified as the Riemannian curvature matrix. Together they form a general relativistic expression given by: <em>M</em><sub><em><span style="font-size:10px;"><em>μ</em></span><em style="font-size:10px;white-space:normal;"></em><em style="font-size:10px;white-space:normal;">v</em><span style="font-size:10px;white-space:normal;"> </span></em></sub>+<em>P</em><sub><em><span style="font-size:10px;"><em>μ</em></span><em style="font-size:10px;white-space:normal;"></em><em style="font-size:10px;white-space:normal;">v</em><span style="font-size:10px;white-space:normal;"> </span></em></sub><em>M=cB<sub><span style="font-size:10px;"><em>μ</em></span><em style="font-size:10px;white-space:normal;"></em><em style="font-size:10px;white-space:normal;">v</em></sub></em>. Here <em>c</em> represents the combined general relativistic constants. By detaching the energy momentum tensor <em>B</em><sub><span style="white-space:nowrap;"><em>μ</em></span><em></em><em>v</em> </sub>from the general relativistic wave equation, converting it to an operator, and then combining the time component with the Bose-Einstein equation, resulted in a brain temperature function capable of calculating precise heat-energies emitted by the brain during the formation of the fetus mind. As the fetus brain becomes more complex, it further organizes the mind. At some point self-aware consciousness is evoked within the spacetime mind. The same equation (<em>relabeled to distinguish it from the mind-brain equation</em>) can be applied to generate all Standard Model Particle masses.
文摘The real-time retrieval of submicron aerosol size distributions is of major interest for applications. Based on the Mie theory,the spectral extinction method offers a simple measurement principle and a convenient optical arrangement. In contrast to the relative simplicity of the experimental measurement the retrieval of the particles size distribution and particle concentration from the spectral extinction method is difficult. Mie scattering Equation is a Fredholm Integral Equation of the First Kind. This paper develops a hybrid iterative model-dependent algorithm for on-line particle sizing from extinction spectra which is both computationally efficient and accurate. Applying the refined Mie diagnostic iterative procedures within some candidate solutions can identify the unique result accurately and rapidly enough for real time measurement. With the addition of added Gaussian noise,an average tolerance up to 5% of noise level is kept for particle size from submicron to micrometer under moderate polydispersity.
基金Supported by Scientific Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (1/0080/08) and from the HEC Pakistangrants from the Plenipotentiary of Slovak Republic at the JINR (Dubna) in 2010-2011
文摘The pseudorapidity spectra of fast particles (with β 〉 0.7) produced in Au (at 11.6 A GeV) and Pb (at 158 A GeV) induced collisions with emulsion (Em) nuclei contain some visual plateaus and shoulders. The plateau is wider for Pb+Em reactions compared with the Au+Em ones. The existence of a plateau is expected for parton models. The Fourier transformation and maximum entropy methods were used to get additional information about the plateaus. The dependence of the plateaus on the centrality of the collisions was also studied using the number of g-particles to fix centrality. It shows that the maximum entropy method could confirm the existence of the plateau and the shoulder on distributions.