A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction ang...A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.展开更多
A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle wa...A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.展开更多
The dynamic response stability of the vibrating screen is an important factor affecting the screening effect and the structural performance of the vibrating screen.In this paper,to improve dynamic response stability a...The dynamic response stability of the vibrating screen is an important factor affecting the screening effect and the structural performance of the vibrating screen.In this paper,to improve dynamic response stability and screening efficiency,we optimized the configuration of linear screening process parameters based on the co-optimization method with dual objectives via the virtual experiment.Firstly,a coupled DEM-MBK simulation model was established according to the dynamics of linear screen,and the dy-namic response law of the screen machine under material impact was investigated.Secondly,the quantitative index of dynamic response stability according to the time-domain characteristics of the centroid amplitude was established.The trend and significance of three types of screening process pa-rameters,including excitation,damping and structure,on the screening efficiency and dynamic response stability were analyzed through virtual orthogonal experiments.Finally,a parameter configuration scheme to achieve co-optimization was proposed based on the comprehensive balance method.The virtual experiment results show that the screening efficiency and dynamic response stability of the proposed scheme are improved by 3.28%and 49.07%,respectively,compared with the empirical parameter configuration.Obviously,the co-optimization method can maintain high screening efficiency and dynamic response stability at the same time,which is beneficial to improve the service life of the screen surface and screen body.展开更多
基金support from the Innovative Research Groups of the National Natural Science Foundation of China (No.50921002)the National Natural Science Foundation of China (Nos.50574091 and 50774084)+1 种基金the "333 Project" Foundation of Jiangsu Provincethe Key Laboratory of Coal Processing & Efficient Utilization,Ministry of Education Foundation (No.CPEUKF 08-02) for this work
文摘A virtual sieving experimental simulation system was built using physical simulation principles.The effects of vibration frequency and amplitude,the inclination angle of the screen-deck and the vibration direction angle of screen on single particle kinematics were predicted.Properties such as the average velocity and the average throw height were studied.The results show that the amplitude and the angle of vibration have a great effect on particle average velocity and average height.The vibration frequency and the screen-deck inclination angle appear to have little influence on these responses.For materials that are difficult to screen the vibration frequency and amplitude,the screen-deck inclination angle and the vibration angle should be set to 14 Hz,6.6 mm,6° and 40°,respectively,to obtain optimal particle kinematics.A screening process can be simulated reliably by means of a virtual experiment and these results provide references for both screening theory research and sieving practice.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject(50921001) supported by the Innovative Research Group Science Foundation,ChinaProject supported by Jiangsu Scientific Researching Fund Project ("333" Project),China
文摘A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.
基金supported by the Unveils Major Projects of Hubei Province(grant No.2019AEE015)The authors acknowledge the help by Ezhou City Machinery and Equipment Green Intelligent Manufacturing Enterprise and School Joint Innovation Center.
文摘The dynamic response stability of the vibrating screen is an important factor affecting the screening effect and the structural performance of the vibrating screen.In this paper,to improve dynamic response stability and screening efficiency,we optimized the configuration of linear screening process parameters based on the co-optimization method with dual objectives via the virtual experiment.Firstly,a coupled DEM-MBK simulation model was established according to the dynamics of linear screen,and the dy-namic response law of the screen machine under material impact was investigated.Secondly,the quantitative index of dynamic response stability according to the time-domain characteristics of the centroid amplitude was established.The trend and significance of three types of screening process pa-rameters,including excitation,damping and structure,on the screening efficiency and dynamic response stability were analyzed through virtual orthogonal experiments.Finally,a parameter configuration scheme to achieve co-optimization was proposed based on the comprehensive balance method.The virtual experiment results show that the screening efficiency and dynamic response stability of the proposed scheme are improved by 3.28%and 49.07%,respectively,compared with the empirical parameter configuration.Obviously,the co-optimization method can maintain high screening efficiency and dynamic response stability at the same time,which is beneficial to improve the service life of the screen surface and screen body.