Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m...Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.展开更多
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment an...Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment and production.In this study,a 3-D finite element (FE) method based on experimental verification was applied to calculate the magnetic flux density (Bz).The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated.The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location.The induction coil with racetrack section can induce greater Bz,and a larger gap between the induction coil and the shield ring increases Bz.The mechanism for this effect is also discussed.展开更多
For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable mag...For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.展开更多
The crucible-free electrode induction melting gas atomization(EIGA) technology is an advanced technology for preparing ultra-clean nickel-based superalloy powders. One of the key issues for fabricating powders with ...The crucible-free electrode induction melting gas atomization(EIGA) technology is an advanced technology for preparing ultra-clean nickel-based superalloy powders. One of the key issues for fabricating powders with high quality and yield is the consecutive induction melting of a superalloy electrode. The coupling of a superalloy electrode and coil,frequency, output power, and heat conduction are investigated to improve the controllable electrode induction melting process. Numerical simulation results show that when the coil frequency is 400 kHz, the output power is 100 kW, superalloy liquid flow with a diameter of about 5 mm is not consecutive. When the coil frequency is reduced to 40 kHz, the output power is 120 kW, superalloy liquid flow is consecutive, and its diameter is about 7 mm.展开更多
Magnetic induction tomography(MIT) is one of the newest industrial process imaging techniques.Main industrial applications of the MIT imaging are in high conductive flow imaging.However,recently it has been shown that...Magnetic induction tomography(MIT) is one of the newest industrial process imaging techniques.Main industrial applications of the MIT imaging are in high conductive flow imaging.However,recently it has been shown that the MIT may be useful for low conductive process imaging.This paper presents a cost effective hardware design for MIT in industrial applications,called Bath-MKI industrial MIT system.The system comprises 8 inductor coils and has the possibility of expansion to 16 coils.The excitation signals and the measured voltages are generated and measured using a LabView based system.Two 16 by 1 multiplexers are used to select between the coils.Measurements,excitation and multiplexing are all controlled by a National Instrument(NI) USB based DAQ:USB-6259 and a signal generator.Using the same electronics,the prototype is tested with two different coil arrays;one is a small scale ferrite core coil and one larger scale air cored coil.Experimental image reconstruction results are shown using both small scale and large scale coil arrays.展开更多
Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polyg...Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polygons.Based on the Biot-Savart law,the method calculates mutual inductance by dividing a polygonal coil into finite wires,and expresses the magnetic induction intensity generated by the excitation coil as a function of the spatial position of each vertex of the coil.The calculation method of the feasible region of the objective function is updated and the calculation process is simplified,so the calculation accuracy is improved.For octagon coils arbitrarily positioned in space,the accuracy of the algorithm is verified by the simulation and experiment.展开更多
基金supported by the Scientific Research Foundation of Xijing University,China(No.XJ19T03)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD201701)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-342).
文摘Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
基金financially supported by the National Basic Research Program of China (Grant No.2011CB605504)
文摘Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment and production.In this study,a 3-D finite element (FE) method based on experimental verification was applied to calculate the magnetic flux density (Bz).The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated.The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location.The induction coil with racetrack section can induce greater Bz,and a larger gap between the induction coil and the shield ring increases Bz.The mechanism for this effect is also discussed.
基金National Key Lab for Electronic Measurement and Technology,North University of China(No.9140C120401080C12)
文摘For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.
文摘The crucible-free electrode induction melting gas atomization(EIGA) technology is an advanced technology for preparing ultra-clean nickel-based superalloy powders. One of the key issues for fabricating powders with high quality and yield is the consecutive induction melting of a superalloy electrode. The coupling of a superalloy electrode and coil,frequency, output power, and heat conduction are investigated to improve the controllable electrode induction melting process. Numerical simulation results show that when the coil frequency is 400 kHz, the output power is 100 kW, superalloy liquid flow with a diameter of about 5 mm is not consecutive. When the coil frequency is reduced to 40 kHz, the output power is 120 kW, superalloy liquid flow is consecutive, and its diameter is about 7 mm.
文摘Magnetic induction tomography(MIT) is one of the newest industrial process imaging techniques.Main industrial applications of the MIT imaging are in high conductive flow imaging.However,recently it has been shown that the MIT may be useful for low conductive process imaging.This paper presents a cost effective hardware design for MIT in industrial applications,called Bath-MKI industrial MIT system.The system comprises 8 inductor coils and has the possibility of expansion to 16 coils.The excitation signals and the measured voltages are generated and measured using a LabView based system.Two 16 by 1 multiplexers are used to select between the coils.Measurements,excitation and multiplexing are all controlled by a National Instrument(NI) USB based DAQ:USB-6259 and a signal generator.Using the same electronics,the prototype is tested with two different coil arrays;one is a small scale ferrite core coil and one larger scale air cored coil.Experimental image reconstruction results are shown using both small scale and large scale coil arrays.
文摘Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polygons.Based on the Biot-Savart law,the method calculates mutual inductance by dividing a polygonal coil into finite wires,and expresses the magnetic induction intensity generated by the excitation coil as a function of the spatial position of each vertex of the coil.The calculation method of the feasible region of the objective function is updated and the calculation process is simplified,so the calculation accuracy is improved.For octagon coils arbitrarily positioned in space,the accuracy of the algorithm is verified by the simulation and experiment.