Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments a...Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out for five impeller configurations with different stagger angles by using the same test rig system. Results show that the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impeller rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up to 50% when the impeller stagger angle is close to 24° or 360°.The impeller structure pattern needs to be taken into consideration during the design period, and the halfway staggered impeller is strongly recommended.展开更多
Double-suction centrifugal pumps have been applied extensively in many areas,and the significance of pressure fluctuations inside these pumps with large power is becoming increasingly important.In this study,a double-...Double-suction centrifugal pumps have been applied extensively in many areas,and the significance of pressure fluctuations inside these pumps with large power is becoming increasingly important.In this study,a double-suction centrifugal pump with a high-demand for vibration and noise was redesigned by increasing the flow uniformity at the impeller discharge,implemented by combinations of more than two parameters.First,increasing the number of the impeller blades was intended to enhance the bounding effect that the blades imposed on the fluid.Subsequently,increasing the radial gap between the impeller and volute was applied to reduce the rotor-stator interaction.Finally,the staggered arrangement was optimized to weaken the efficacy of the interference superposition.Based on numerical simulation,the steady and unsteady characteristics of the pump models were calculated.From the fluctuation analysis in the frequency domain,the dimensionless pressure fluctuation amplitude at the blade passing frequency and its harmonics,located on the monitoring points in the redesigned pumps(both with larger radial gap),are reduced a lot.Further,in the volute of the model with new impellers staggered at 12°,the average value for the dimensionless pressure fluctuation amplitude decreases to 6%of that in prototype pump.The dimensionless rootmean-square pressure contour on the mid-span of the impeller tends to be more uniform in the redesigned models(both with larger radial gap);similarly,the pressure contour on the mid-section of the volute presents good uniformity in these models,which in turn demonstrating a reduction in the pressure fluctuation intensity.The results reveal the mechanism of pressure fluctuation reduction in a double-suction centrifugal pump,and the results of this study could provide a reference for pressure fluctuation reduction and vibration performance reinforcement of doublesuction centrifugal pumps and other pumps.展开更多
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro...Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.51621061,51139007,51409247)National Science and Technology Support Project of China(Grant No.2015BAD20B01)
文摘Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out for five impeller configurations with different stagger angles by using the same test rig system. Results show that the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impeller rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up to 50% when the impeller stagger angle is close to 24° or 360°.The impeller structure pattern needs to be taken into consideration during the design period, and the halfway staggered impeller is strongly recommended.
基金Supported by National Natural Science Foundation of China(Grant Nos.52076186,51839010).
文摘Double-suction centrifugal pumps have been applied extensively in many areas,and the significance of pressure fluctuations inside these pumps with large power is becoming increasingly important.In this study,a double-suction centrifugal pump with a high-demand for vibration and noise was redesigned by increasing the flow uniformity at the impeller discharge,implemented by combinations of more than two parameters.First,increasing the number of the impeller blades was intended to enhance the bounding effect that the blades imposed on the fluid.Subsequently,increasing the radial gap between the impeller and volute was applied to reduce the rotor-stator interaction.Finally,the staggered arrangement was optimized to weaken the efficacy of the interference superposition.Based on numerical simulation,the steady and unsteady characteristics of the pump models were calculated.From the fluctuation analysis in the frequency domain,the dimensionless pressure fluctuation amplitude at the blade passing frequency and its harmonics,located on the monitoring points in the redesigned pumps(both with larger radial gap),are reduced a lot.Further,in the volute of the model with new impellers staggered at 12°,the average value for the dimensionless pressure fluctuation amplitude decreases to 6%of that in prototype pump.The dimensionless rootmean-square pressure contour on the mid-span of the impeller tends to be more uniform in the redesigned models(both with larger radial gap);similarly,the pressure contour on the mid-section of the volute presents good uniformity in these models,which in turn demonstrating a reduction in the pressure fluctuation intensity.The results reveal the mechanism of pressure fluctuation reduction in a double-suction centrifugal pump,and the results of this study could provide a reference for pressure fluctuation reduction and vibration performance reinforcement of doublesuction centrifugal pumps and other pumps.
基金Supported by National Natural Science Foundation of China(Grant No.51109094)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.