We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative solit...We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative soliton laser operating at1030 nm, and operating in dissipative soliton mode. The amplifier stage is mainly based on a double-cladding20 μm radius ytterbium-doped fiber pumped by an up to 2.5 W CW laser source. The optical-to-optical conversion amplifier efficiency is around 40%. To our knowledge, this is the first report of an all-fiber mode-locked fiber laser oscillator amplified by an all-fiber amplifier.展开更多
基金Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative soliton laser operating at1030 nm, and operating in dissipative soliton mode. The amplifier stage is mainly based on a double-cladding20 μm radius ytterbium-doped fiber pumped by an up to 2.5 W CW laser source. The optical-to-optical conversion amplifier efficiency is around 40%. To our knowledge, this is the first report of an all-fiber mode-locked fiber laser oscillator amplified by an all-fiber amplifier.