The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative mot...The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative motion errors. The current research mainly focuses on improving assembly accuracy and control performance of serial segment erectors. An innovative design method is proposed featuring motion group-decoupling, based on which a new type of segment erector is developed and investigated. Firstly, the segment installation manipulation is analyzed and decomposed into three motion groups that are decoupled. Then the type synthesis for the 4-DOF motion group is performed based on the general function(GF) set theory and a new configuration of (1T?1R?1PS3UPS) is attained according to the segment manipulation requirements. Consequently, the kinematic models are built and the reducibility and accuracy are analyzed. The dexterity is verified though numerical simulation and no singular points appear in the workspace. Finally, a positioning experiment is carried out by using the prototype developed in the lab that demonstrates a 13.1% improvement of positioning accuracy and the feasibility of the new segment erector. The presented group-decoupling design method is able to invent new type of hybrid segment erectors that avoid the accumulative motion error of erecting.展开更多
The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and th...The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.展开更多
A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning pro...A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 51275284)Program for New Century Excellent Talents in University of China(Grant No. NCET-10-0567)the Research Fund of State Key Lab of Mechanical Systems and Vibration(Grant No.MSV-ZD-2010-02)
文摘The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative motion errors. The current research mainly focuses on improving assembly accuracy and control performance of serial segment erectors. An innovative design method is proposed featuring motion group-decoupling, based on which a new type of segment erector is developed and investigated. Firstly, the segment installation manipulation is analyzed and decomposed into three motion groups that are decoupled. Then the type synthesis for the 4-DOF motion group is performed based on the general function(GF) set theory and a new configuration of (1T?1R?1PS3UPS) is attained according to the segment manipulation requirements. Consequently, the kinematic models are built and the reducibility and accuracy are analyzed. The dexterity is verified though numerical simulation and no singular points appear in the workspace. Finally, a positioning experiment is carried out by using the prototype developed in the lab that demonstrates a 13.1% improvement of positioning accuracy and the feasibility of the new segment erector. The presented group-decoupling design method is able to invent new type of hybrid segment erectors that avoid the accumulative motion error of erecting.
基金Project(N2018G034)supported by China Railway Corporation。
文摘The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.
基金Project(51305328)supported by the National Natural Science Foundation of ChinaProject(2012AA041803)supported by the NationalHigh Technology R&D Program of China+1 种基金Project(GZKF-201210)supported by the Open Fund of State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University,ChinaProject(2013M532031)supported by the China Postdoctoral Science Foundation
文摘A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine.