期刊文献+
共找到1,958篇文章
< 1 2 98 >
每页显示 20 50 100
Effects of mixed fertilizers formed by the compounding of two targeted controlled-release nitrogen fertilizers on yield,nitrogen use efficiency,and ammonia volatilization in double-cropping rice 被引量:1
1
作者 Jian Ke Jie Sun +7 位作者 Tingting Chen Shibao Tao Tiezhong Zhu Chuanjun Yin Haibing He Cuicui You Liquan Wu Shuangshuang Guo 《The Crop Journal》 SCIE CSCD 2023年第2期628-637,共10页
One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and fro... One-time application of mixed fertilizer formed by the compounding of two controlled-release nitrogen fertilizers(CRUs)with targeted N supply during the periods from transplantation(TS)to panicle initiation(PI)and from PI to heading(HS)is expected to synchronize the double-peak N demand of rice.However,its effects on the yield and N use efficiency(NUE)of labor-intensive double-cropping rice were unknown.Two targeted CRU(CRU_(A)and CRU_(B))were compounded in five ratios(CRU_(A):CRU_(B)=10:0,7:3,5:5,3:7,and 0:10)to form five mixed fertilizers(BBFs):BBF1-5.A field experiment was performed to investigate the characteristics of N supply in early and late seasons under different BBFs and their effects on N uptake,yield,and ammonia volatilization(AV)loss from paddy fields of double-cropping rice.Conventional high-yield fertilization(CK,three split applications of urea)and zero-N treatments were established as controls.The N supply dropped significantly with the increased compound ratio of CRU_(B)during the period from TS to PI,but increased during the period from PI to HS.With the exception of the period from TS to PI in the late rice season,the N uptake of early and late rice maintained close synchronicity with the N supply of BBFs during the double-peak periods.Excessive N supply(BBF1 and BBF2)in the late rice season during the period from TS to PI increased N loss by AV.The effect of BBF on grain yield increase varied widely between seasons,irrespective of year.Among the BBFs,the BBF2 treatment of early rice not only stabilized the spikelets per panicle but also ensured a high number of effective panicles by promoting N uptake during the period from TS to PI and a high grain-filling percentage by appropriately reducing the N supply at the later PI stage,resulting in the highest rice yield.While stabilizing the effective panicle number,the BBF4 treatment of late rice increased the number of spikelets per panicle by promoting N uptake during the period from PI to HS,resulting in the highest rice yield.The two-year average yield and apparent N recovery efficiency of the BBF2 treatment during the early rice season were 9.6 t ha 1 and 45.3%,while those of late rice in BBF4 were 9.6 t ha 1 and 43.0%,respectively.The yield and NUE indexes of BBF2 in early rice and BBF4 in late rice showed no significant difference from those of CK.The AVs of BBF2 during the early rice season and of BBF4 during the late rice season were 50.0%and 76.8%lower,respectively,than those of CK.BBF2 and BBF4 could effectively replace conventional urea split fertilization in early and late rice seasons,ensuring rice yield and NUE and reducing AV loss in paddy fields. 展开更多
关键词 Targeted controlled-release fertilizer Mixed fertilizer double-cropping rice N uptake YIELD
下载PDF
Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China 被引量:21
2
作者 HUANG Wan WU Jian-fu +5 位作者 PAN Xiao-hua TAN Xue-ming ZENG Yong-jun SHI Qing-hua LIU Tao-ju ZENG Yan-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期236-247,共12页
Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the ... Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the specific effects of long-term rice straw management on SOC fractions, the related enzyme activities and their relationships, and whether these effects differ between crop growing seasons remain unknown. Three treatments with equal nitrogen, phosphorus, and potassium nutrient inputs, including straw/ash and chemical nutrients, were established to compare the effects of straw removal(CK), straw return(SR), and straw burned return(SBR). Compared to CK, long-term SR tended to improve the yield of early season rice(P=0.057), and significantly increased total organic carbon(TOC) and microbial biomass carbon(MBC) in double-cropped rice paddies. While SBR had no effect on TOC, it decreased light fraction organic carbon(LFOC) in early rice and easily oxidizable organic carbon(EOC) in late rice, significantly increased dissolved organic carbon(DOC), and significantly decreased soil p H. These results showed that MBC was the most sensitive indicator for assessing changes of SOC in the double-cropped rice system due to long-term straw return. In addition, the different effects on SOC fraction sizes between SR and SBR were attributed to the divergent trends in most of the soil enzyme activities in the early and late rice that mainly altered DOC, while DOC was positively affected by β-xylosidase in both early and late rice. We concluded that straw return was superior to straw burned return for improving SOC fractions, but the negative effects on soil enzyme activities in late rice require further research. 展开更多
关键词 double-cropped rice paddy system straw return straw burned return SOC fractions soil enzyme activities
下载PDF
Inter-provincial Differences in Rice Multi-cropping Changes in Main Double-cropping Rice Area in China: Evidence from Provinces and Households 被引量:3
3
作者 WANG Renjing LI Xiubin +4 位作者 TAN Minghong XIN Liangjie WANG Xue WANG Yahui JIANG Min 《Chinese Geographical Science》 SCIE CSCD 2019年第1期127-138,共12页
Since the early 1980 s, the multi-cropping index for rice has decreased significantly in main double-cropping rice area in China, which is the primary double-cropping rice(DCR) production area. This decline may bring ... Since the early 1980 s, the multi-cropping index for rice has decreased significantly in main double-cropping rice area in China, which is the primary double-cropping rice(DCR) production area. This decline may bring challenges to food security in China because rice is the staple food for more than 60% of the Chinese population. It has been generally recognized that rapidly rising labor costs due to economic growth and urbanization in China is the key driving force of the ‘double-to-single' rice cropping system adaption. However, not all provinces have shown a dramatic decline in DCR area, and labor costs alone cannot explain this difference. To elucidate the reasons for these inter-provincial distinctions and the dynamics of rice cropping system adaption, we evaluated the influencing factors using provincial panel data from 1980 to 2015. We also used household survey data for empirical analysis to explore the mechanisms driving differences in rice multi-cropping changes. Our results indicated that the eight provinces in the study can be divided into three spatial groups based on the extent of DCR area decline, the rapidly-declining marginal, core, and stable zones. Increasing labor cost due to rapid urbanization was the key driving force of rice cropping system adaption, but the land use dynamic vary hugely among different provinces. These differences between zones were due to the interaction between labor price and accumulated temperature conditions. Therefore, increasing labor costs had the greatest impact in Zhejiang, Anhui, and Hubei, where the accumulated temperature is relatively low and rice multi-cropping index declined dramaticly. However, labor costs had little impact in Guangdong and Guangxi. Differences in accumulated temperature conditions resulted in spatially different labor demands and pressure on households during the busy season. As a result, there have been different profits and rice multi-cropping changes between provinces and zones. Because of these spatial differences, regionally appropriate policies that provide appropriate subsidies for early rice in rapidly-declining marginal zone such as Zhejiang and Hubei should be implemented. In addition, agricultural mechanization and the number of agricultural workers have facilitated double-cropping; therefore, small machinery and agricultural infrastructure construction should be further supported. 展开更多
关键词 multi-cropping change INTER-PROVINCIAL DIFFERENCES cropping system adaption accumulated temperature double-cropping rice area China
下载PDF
The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China
4
作者 ZHANG Zi-han NIE Jun +7 位作者 LIANG Hai WEI Cui-lan WANG Yun LIAO Yu-lin LU Yan-hong ZHOU Guo-peng GAO Song-juan CAO Wei-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1529-1545,共17页
The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stabil... The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear.In the present study,the effect of GM,RS,and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment.The experiment included six treatments,i.e.,winter fallow (WF) without RS return (Ctrl),WF with 50%RS return (1/2RS),WF with 100%RS return (RS),GM without RS return (GM),GM with 50%RS return (GM1/2RS) and GM with 100%RS return (GMRS).The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%,respectively) than in the RS treatment,while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%).The concentration of SOC in microaggregates (0.053–0.25 mm)and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually.The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment,whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates,microaggregates,and bulk was lower in the GMRS treatment than in the RS treatment.The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment.The GMRS treatment had strong positive effects on iPOC in small macroaggregates,suggesting that SOC was transferred from fLOC to iPOC.In conclusion,co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection. 展开更多
关键词 SOIL aggregation milk VETCH rice straw SoC density fractions C STABILITY paddy SOIL
下载PDF
Mapping upland crop–rice cropping systems for targeted sustainable intensification in South China
5
作者 Bingwen Qiu Linhai Yu +4 位作者 Peng Yang Wenbin Wu Jianfeng Chen Xiaolin Zhu Mingjie Duan 《The Crop Journal》 SCIE CSCD 2024年第2期614-629,共16页
Upland crop-rice cropping systems(UCR)facilitate sustainable agricultural intensification.Accurate UCR cultivation mapping is needed to ensure food security,sustainable water management,and rural revitalization.Howeve... Upland crop-rice cropping systems(UCR)facilitate sustainable agricultural intensification.Accurate UCR cultivation mapping is needed to ensure food security,sustainable water management,and rural revitalization.However,datasets describing cropping systems are limited in spatial coverage and crop types.Mapping UCR is more challenging than crop identification and most existing approaches rely heavily on accurate phenology calendars and representative training samples,which limits its applications over large regions.We describe a novel algorithm(RRSS)for automatic mapping of upland crop-rice cropping systems using Sentinel-1 Synthetic Aperture Radar(SAR)and Sentinel-2 Multispectral Instrument(MSI)data.One indicator,the VV backscatter range,was proposed to discriminate UCR and another two indicators were designed by coupling greenness and pigment indices to further discriminate tobacco or oilseed UCR.The RRSS algorithm was applied to South China characterized by complex smallholder rice cropping systems and diverse topographic conditions.This study developed 10-m UCR maps of a major rice bowl in South China,the Xiang-Gan-Min(XGM)region.The performance of the RRSS algorithm was validated based on 5197 ground-truth reference sites,with an overall accuracy of 91.92%.There were7348 km^(2) areas of UCR,roughly one-half of them located in plains.The UCR was represented mainly by oilseed-UCR and tobacco-UCR,which contributed respectively 69%and 15%of UCR area.UCR patterns accounted for only one-tenth of rice production,which can be tripled by intensification from single rice cropping.Application to complex and fragmented subtropical regions suggested the spatiotemporal robustness of the RRSS algorithm,which could be further applied to generate 10-m UCR datasets for application at national or global scales. 展开更多
关键词 Cropping-pattern mapping paddy rice Sentinel-1/2 China Sustainable intensification
下载PDF
Comparison of Manual and Automatic Methods for Measurement of Methane Emission from Rice Paddy Fields 被引量:28
6
作者 郑循华 王明星 +2 位作者 王跃思 沈壬兴 李晶 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第4期139-149,共11页
S The methane emission flux from rice paddies was simultaneously measured with automatic and manual methods in the suburban of Suzhou. Both methods were based on the static chamber/GC-FID techniques. Detail analysi... S The methane emission flux from rice paddies was simultaneously measured with automatic and manual methods in the suburban of Suzhou. Both methods were based on the static chamber/GC-FID techniques. Detail analysis of the experimental results indicates: a) The data of methane emission measured with the automatic method is reliable. b) About 11 or 19 o′clock of local time is recommended as the optimum sampling time for the manual spot measurement of methane emission from rice paddies. The methane emission fluxes measured by manual sampling at local time other than the optimum time have to be corrected. The correction coefficient may be determined by automatic and continuous measurement. c) In order to get a more accurate result, an empirical correction factor, such as 18%, is recommended to correct the seasonally total amount of measured methane emission by enlarging the automatically measured data or reducing the manually measured ones. 展开更多
关键词 Methane emission Automatic method Manual method rice paddy
下载PDF
Effects of straw and biochar addition on soil nitrogen,carbon,and super rice yield in cold waterlogged paddy soils of North China 被引量:23
7
作者 CUI Yue-feng MENG Jun +3 位作者 WANG Qing-xiang ZHANG Wei-ming CHENG Xiao-yi CHEN Wen-fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1064-1074,共11页
The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s... The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice. 展开更多
关键词 BIOCHAR STRAW paddy field nitrogen form carbon sequestration greenhouse gas emission rice yield
下载PDF
Effect of various crop rotations on rice yield and nitrogen use efficiency in paddy–upland systems in southeastern China 被引量:14
8
作者 Song Chen Shaowen Liu +7 位作者 Xi Zheng Min Yin Guang Chu Chunmei Xu Jinxiang Yan Liping Chen Danying Wang Xiufu Zhang 《The Crop Journal》 SCIE CAS CSCD 2018年第6期576-588,共13页
To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six ... To evaluate the effects of various rotation systems on rice grain yield and N use efficiency, a paddy–upland cropping experiment(2013–2016) was conducted in southeastern China. The experiment was designed using six different rice––winter crop rotations: rice–fallow(RF),rice–wheat(RW), rice–potato with rice straw mulch(RP), rice–green manure(Chinese milk vetch; RC–G), rice–oilseed rape(RO), and rice–green manure crop(oilseed rape with fresh straw incorporated into soil at flowering; RO–G) and three N rates, N0(0 kg N ha-1), N1(142.5 kg N ha-1), and N2(202.5 kg N ha-1). Average rice yields in the RF(5.93 t ha-1) rotation were significantly lower than those in the rotations with winter crops(7.20–7.48 t ha-1)under the N0 treatment, suggesting that incorporation of straw might be more effective for increasing soil N than winter fallow. The rice yield differences among the rotations varied by year with the N input. In general, the grain yields in the RP and RO–G rotations –were respectively 11.6–28.5% and 14.80–37.19% higher than those in the RF in plots with N applied. Increasing the N rate may have tended to minimize the average yield gap between the RF and the other rotations; the yield gaps were 18.55%, 4.14%, and 0.23% in N0, N1, and N2, respectively. However, the N recovery efficiency in the RF was significantly lower than that in other rotations, except for 2015 under both N1 and N2 rates, a finding that implies a large amount of chemical N loss. No significant differences in nitrogen agronomic efficiency(NAE) and physiological efficiency(NPE) were found between the rotations with legume(RC–G) and non–legume(RO and RW) winter crops, a result that may be due partly to straw incorporation. For this reason, we concluded that the return of straw could reduce differences in N use efficiency between rotations with and without legume crops. The degree of synchrony between the crop N demand and the N supply was evaluated by comparison of nitrogen balance degree(NBD) values. The NBD values in the RP and RW were significantly lower than those in the other rotations under both N1 and N2 rates. Thus,in view of the higher grain yield in the RP compared to the RW under the N1 rate, the RP rotation might be a promising practice with comparable grain yield and greater N use efficiency under reduced N input relative to the other rotations. The primary yield components of the RF and RP were identified as number of panicles m-2 and numbers of kernels panicle-1, respectively. The NAE and NPE were positively correlated with harvest index, possibly providing a useful indicator for evaluating N use efficiency. 展开更多
关键词 rice(Oryza SATIVA L.) paddy–upland rotation Nitrogen use efficiency WINTER CROPS
下载PDF
Discrepancy in Response of Rice Yield and Soil Fertility to Long-Term Chemical Fertilization and Organic Amendments in Paddy Soils Cultivated from Infertile Upland in Subtropical China 被引量:12
9
作者 LIU Ming LI Zhong-pei +2 位作者 ZHANG Tao-lin JIANG Chun-yu CHE Yu-ping 《Agricultural Sciences in China》 CAS CSCD 2011年第2期259-266,共8页
From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilizat... From 1990,over 17 years field experiment was carried out in paddy field cultivated from infertile upland to evaluate the response of rice productivity,soil organic carbon(SOC),and total N to long-term NPK fertilization or NPK combined with organic amendments.The field trials included NPK(N,P,K fertilizer),NPKRS(NPK combined with rice straw),NPK2RS(NPK combined with double amount of rice straw),NPKPM(NPK combined with pig manure) and NPKGM(NPK combined with green manure) and the cropping system was rice-rice(Oryza sativa L.) rotation.Annual rice yield,straw biomass,and harvesting index increased steadily with cultivation time in all treatments.Average annual rice yield from 1991 to 2006 was ranged from 7 795 to 8 572 kg ha-1 among treatments.Rice yields in treatments with organic amendments were usually higher than that in treatment with NPK.Contents of SOC and total N also increased gradually in the cultivation years and reached the level of 7.82 to 9.45 and 0.85 to 1.03 g kg-1,respectively,in 2006.Soil fertilities in treatments with chemical fertilization combined with organic amendments were relatively appropriate than those in treatment with NPK.There was obvious discrepancy between cumulative characters of rice yield and soil organic fertility in newly formed paddy field.Compared with relatively high rate of crop productivity improvement,cumulative rates of SOC and total N were much lower in our study.SOC and total N contents were still less than half of those in local highly productive paddy soils after 17 years cultivation in subtropical China.Present work helps to better understand the development of infertile paddy soils and to estimate the potential of yield improvement in this region. 展开更多
关键词 paddy field rice yield SOC total N long-term field experiment
下载PDF
Impact of Long-Term Fertilization on Community Structure of Ammonia Oxidizing and Denitrifying Bacteria Based on amoA and nirK Genes in a Rice Paddy from Tai Lake Region,China 被引量:8
10
作者 JIN Zhen-jiang LI Lian-qing +3 位作者 LIU Xiao-yu PAN Gen-xing Qaiser Hussein LIU Yong-zhuo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第10期2286-2298,共13页
Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community ... Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community composition of AOB and DNB were studied with targeting ammonia monooxygenase (amoA) and nitrite reductase (nirK) genes using polymerase chain reaction- denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR, respectively. A field trial with different fertilization treatments in a rice paddy from Tai Lake region, centre East China was used in this study, including no fertilizer application (NF), balanced chemical fertilizers (CF), combined organic/inorganic fertilizer of balanced chemical fertilizers plus pig manure (CFM), and plus rice straw return (CFS). The abundances and riehnesses of amoA and nirK were increased in CF, CFM and CFS compared to NF. Principle component analysis of DGGE profiles showed significant difference in nirK and amoA genes composition between organic amended (CFS and CFM) and the non-organic amended (CF and NF) plots. Number of amoA copies was significantly positively correlated with normalized soil nutrient richness (NSNR) of soil organic carbon (SOC) and total nitrogen (T-N), and that of nirK copies was with NSNR of SOC, T-N plus total phosphorus. Moreover, nitrification potential showed a positive correlation with SOC content, while a significantly lower denitrification potential was found under CFM compared to under CFS. Therefore, SOC accumulation accompanied with soil nutrient richness under long-term balanced and organic/inorganic combined fertilization promoted abundance and diversity of AOB and DNB in the rice paddy. 展开更多
关键词 long-term fertilization ammonia oxidizing bacteria denitrifying bacteria abundance rice paddy
下载PDF
Study of Dynamics of Floodwater Nitrogen and Regulation of Its Runoff Loss in Paddy Field-Based Two-Cropping Rice with Urea and Controlled Release Nitrogen Fertilizer Application 被引量:12
11
作者 JI Xiong-hui ZHENG Sheng-xian +1 位作者 LUYan-hong LIAO Yu-lin 《Agricultural Sciences in China》 CAS CSCD 2007年第2期189-199,共11页
The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regul... The article deals with the effects of urea and controlled release nitrogen fertilizer (CRNF) on dynamics of pH, electronic conductivity (EC), total nitrogen (TN), NH4^+-N and NO3 -N in floodwater, and the regulation of runoff TN loss from paddy field-based two-cropping rice in Dongting Lake, China, and probes the best fertilization management for controlling N loss. Studies were conducted through modeling alluvial sandy loamy paddy soil (ASP) and purple calcareous clayey paddy soil (PCP) using lysimeter, following the sequence of the soil profiles identified by investigating soil profile. After application of urea in paddy field-based two-cropping rice, TN and NHa+-N concentrations in floodwater reached peak on the 1st and the 3rd day, respectively, and then decreased rapidly over time; all the floodwater NO3--N concentrations were very low; the pH of floodwater gradually rose in case of early rice within 15 d (late rice within 3 d) after application of urea, and EC remained consistent with the dynamics of NH4^+-N. The applied CRNF, especially 70% CRNF, led to significantly lower floodwater TN and NH4^+ concentrations, pH, and EC values compared with urea within 15 d after application. The monitoring result for N loss due to natural rainfall runoff indicated that the amount of TN lost in runoff from paddy field- based two-cropping rice with urea application in Dongting Lake area was 7.47 kg ha^-1, which accounted for 2.49% of urea- N applied, and that with CRNF and 70% CRNF application decreased 24.5 and 27.2% compared with urea application, respectively. The two runoff events, which occurred within 20 d after application, contributed significantly to TN loss from paddy field. TN loss due to the two runoffs in urea, CRNF, and 70% CRNF treatments accounted for 72, 70, and 58% of the total TN loss due to runoff over the whole rice growth season, respectively. And the TN loss in these two CRNF treatments due to the first run-off event at the 10th day after application to early rice decreased 44.9 and 44.2% compared with urea, respectively. In conclusion, the 15-d period after application of urea was the critical time during which N loss occurred due to high floodwater N concentrations. But CRNF decreased N concentrations greatly in floodwater and runoff water during this period. As a result, it obviously reduced TN loss in runoff over the whole rice growth season. 展开更多
关键词 controlled release nitrogen fertilizer paddy field-based two-cropping rice FLOODWATER NITROGEN loss due to runoff
下载PDF
Climate Change Impact and Its Contribution Share to Paddy Rice Production in Jiangxi, China 被引量:6
12
作者 LI Wen-juan TANG Hua-jun +5 位作者 QIN Zhi-hao YOU Fei WANG Xiu-fen CHEN Chang-li JI Jian-hua LIU Xiu-mei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第7期1565-1574,共10页
In the study, an improved approach was proposed to identify the contribution shares of three group factors that are climate, technology and input, social economic factors by which the grain production is shaped. In or... In the study, an improved approach was proposed to identify the contribution shares of three group factors that are climate, technology and input, social economic factors by which the grain production is shaped. In order to calibrate the method, Jiangxi Province, one of the main paddy rice producers in China was taken as an example. Based on 50 years (1961-2010) meteorological and statistic data, using GIS and statistical analysis tools, the three group factors that in certain extent impact China's paddy rice production have been analyzed quantitatively. The individual and interactive contribution shares of each factor group have been identiifed via eta square (η2). In the paper, two group ordinary leasr square (OLS) models, paddy models and climate models, have been constructed for further analysis. Each model group consists of seven models, one full model and six partial models. The results of paddy models show that climate factors individually and interactively contribute 11.42-15.25%explanatory power to the variation of paddy rice production in the studied province. Technology and input factors contribute 16.17%individually and another 8.46%interactively together with climate factors, totally contributing about 25%. Social economic factors contribute about 7%of which 4.65%is individual contribution and 2.49%is interactive contribution together with climate factors. The three factor groups individually contribute about 23%and interactively contribute additional 41%to paddy rice production. In addition every two of the three factor groups also function interactively and contribute about 22%. Among the three factor groups, technology and input are the most important factors to paddy rice production. The results of climate models support the results of paddy models, and display that solar radiation (indicated by sunshine hour variable) is the dominate climate factor for paddy rice production. 展开更多
关键词 climate change food security paddy rice production contribution share China
下载PDF
The effects of water and nitrogen on the roots and yield of upland and paddy rice 被引量:10
13
作者 ZHANG Ya-jie XU Jing-nan +3 位作者 CHENG Ya-dan WANG Chen LIU Gao-sheng YANG Jian-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第5期1363-1374,共12页
It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of... It is of great significance to study the root characteristics of rice to improve water and nitrogen(N) use efficiency and reduce environmental pollution. This study investigated whether root traits and architecture of rice influence grain yield, as well as water and N utilization efficiency. An experiment was conducted using the upland rice cultivar Zhonghan 3(a japonica cultivar) and paddy rice cultivar Huaidao 5(also a japonica cultivar) using three N levels, namely, 2 g urea/pot(low amount, LN), 3 g urea/pot(normal amount, NN), and 4 g urea/pot(high amount, HN), and three soil water potentials(SWPs, namely, well-watered(0 kPa), mildly dried(–20 kPa) and severely dried(–40 kPa). The results showed that with decreasing SWP, the percentage of upland rice roots increased in the 0–5 cm tillage layer, and decreased in the 5–10 and 10–20 cm tillage layers, whereas paddy rice roots showed the opposite trend. With increasing amounts of N, the yield of upland and paddy rice increased, and the percentage of root volume ratios of the two rice cultivars in the 0–5 and 5–10 cm tillage layers increased, whereas that in the 10–20 cm tillage layer decreased. The roots of upland rice are mainly distributed in the 10–20 cm tillage layer, whereas most paddy rice roots are in the 0–5 cm tillage layer. These results indicate that the combination of-20 kPa SWP and NN in upland rice and 0 kPa SWP and LN in paddy rice promotes the growth of the root system during the middle and late stages, which in turn may decrease the requirements for water and N fertilizer and increase rice yield. 展开更多
关键词 UPLAND rice paddy rice ROOT traits ROOT architecture soil WATER potential NITROGEN
下载PDF
Tracing the behaviour of hexachlorobenzene in a paddy soil-rice system over a growth season 被引量:3
14
作者 YANG Hua ZHENG Minghui ZHU Yongguan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第1期56-61,共6页
Hexachlorobenzene (HCB), a persistent organic pollutant (POP), has been found in paddy soils. To improve the understanding of HCB contamination in paddy soils, a laboratory simulative study was carried out to inve... Hexachlorobenzene (HCB), a persistent organic pollutant (POP), has been found in paddy soils. To improve the understanding of HCB contamination in paddy soils, a laboratory simulative study was carried out to investigate the behavior of HCB in a paddy soil and rice plants. This study was divided into three experiments. First, an experiment aimed to examine the evaporation of HCB in paddy soil. In the second experiment, rice was planted in 10 mg/kg HCB contaminated soil and after pot culture at 3, 6, 9, and 27 weeks (at maturity), both soil and plant samplings were scheduled to be sampled. The soil samples comprised rhizosphere soil, nortrhizosphere soil, and unplanted contaminated soil, whereas plant samples included shoots, roots, and rice grains (dehusked). Lastly, in this part, HCB in xylem saps was designed to be examined. The results showed that (1) the HCB translocation from paddy soil to rice by vaporization; (2) the HCB concentration in rice grains was surprisingly high; (3) the observed HCB decrease in rice rhizosphere offers a potential means for in situ HCB degradation; (4) HCB might not be transported along transpiration in rice. 展开更多
关键词 HCB paddy soil rice RHIZOSPHERE xylem sap
下载PDF
Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields 被引量:8
15
作者 GUO Xiao-hong LAN Yu-chen +5 位作者 XU Ling-qi YIN Da-wei LI Hong-yu QIAN Yong-de ZHENG Gui-ping LU Yan-dong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期540-553,共14页
Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s... Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies. 展开更多
关键词 rice yield saline–alkaline soil nitrogen accumulation paddy field Songnen Plain
下载PDF
Rapid Non-destructive Detection for Molds Colony of Paddy Rice Based on Near Infrared Spectroscopy 被引量:4
16
作者 Zhang Qiang Liu Cheng-hai +4 位作者 Sun Jing-kun Cui Yi-juan Li Qun Jia Fu-guo Zheng Xian-zhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第4期54-60,共7页
Near infrared spectrometer technology under a wavelength range of 918-1045 nm was used to rapidly detect paddy rice that was stored at 5℃, 15℃ and 25℃. A total of 121 paddy rice samples were collected from artifici... Near infrared spectrometer technology under a wavelength range of 918-1045 nm was used to rapidly detect paddy rice that was stored at 5℃, 15℃ and 25℃. A total of 121 paddy rice samples were collected from artificial infection with moulds to build the calibration models to calculate the total number colony of moulds based on the principal component regression method and multiple linear regression method. The results of statistical analysis indicated that multiple linear regression method was applicable to the detection of the total number colony of moulds. The correlation of calibration data set was 0.943. The correlation of prediction data set was 0.897. Therefore, the result showed that near infrared spectroscopy could be a useful instrumental method for determining the total number colony of moulds in paddy rice. The near infrared spectroscopy methodology could be applied for monitoring mould contamination in postharvest paddy rice during storage and might become a powerful tool for monitoring the safety of the grain. 展开更多
关键词 near infrared spectroscopy paddy rice MOULDS multiple linear regression principal component analysis
下载PDF
Effects of Phosphorus on Grain Quality of Upland and Paddy Rice under Different Cultivation 被引量:2
17
作者 ZHANG Ya-jie HUA Jing-jing +2 位作者 LI Ya-chao CHEN Ying-ying YANG Jian-chang 《Rice science》 2012年第2期135-142,共8页
We investigated how upland and paddy japonica rice responded to phosphorous (P) fertilizer under two cultivation methods. The upland rice Zhonghan 3 and the paddy rice Yangfujing 8 were both grown under moist cultiv... We investigated how upland and paddy japonica rice responded to phosphorous (P) fertilizer under two cultivation methods. The upland rice Zhonghan 3 and the paddy rice Yangfujing 8 were both grown under moist cultivation (MC, control) and bare dry cultivation (DC) with three P levels, low (LP, 45 kg/hm2), normal (NP, 90 kg/hm2) and high (HI:), 135 kg/hm2). As P level increased, grain yields of both upland and paddy rice increased under DC. There were no significant differences in grain yields between HP and NP for either rice, although upland rice slightly increased and paddy rice slightly decreased in grain yield. Under DC at LP, Zhonghan 3 showed a higher head milled rice rate and better appearance, cooking and eating qualities than at HP or NP. Yangfujing 8 was similar to Zhonghan 3 except that Yangfujing 8 had better appearance quality at NP. Under MC, Zhonghan 3 had a higher head milled rice rate at LP and better cooking and eating qualities at NP. Yangfujing 8 was similar to Zhonghan 3 except in appearance quality. DC improved head milled rice rate and appearance quality of both upland and paddy rice, and cooking and nutrient qualities of paddy rice. Compared with paddy rice, upland rice had better processing, nutrient and eating qualities. The results suggest that upland and paddy rice respond differently to cultivation method and phosphorus level. 展开更多
关键词 upland rice paddy rice dry cultivation moist cultivation PHOSPHORUS grain quality
下载PDF
Ammonium Effects on Nitrate Uptake by Roots of Upland and Paddy Rice Seedlings Related to Membrane Potential Differences 被引量:1
18
作者 WANG Xiao-li WANG Yu-qian TAO Yue-yue FENG Ke 《Agricultural Sciences in China》 CAS CSCD 2010年第6期799-805,共7页
Nitrate uptake characteristics and ammonium effects on nitrate uptake were compared between upland rice (Brazilian upland rice) and paddy rice (Wuyujing 3 and Yangdao 6) through the glass microelectrode technique ... Nitrate uptake characteristics and ammonium effects on nitrate uptake were compared between upland rice (Brazilian upland rice) and paddy rice (Wuyujing 3 and Yangdao 6) through the glass microelectrode technique and the concentration gradient method of uptake kinetics.Results indicated that nitrate uptake by rice seedlings and ammonium effects were depending on membrane potential of root cells.And upland rice and paddy rice presented obviously different responses.For all cultivars,the nitrate treatments induced rapid depolarization and then slow repolarization of membrane potential in root epidermal cells,and even hyperpolarization was observed when nitrate concentration was low.The membrane potential of epidermal cells in Brazilian upland rice roots was larger and its response to NO3- was bigger than those of two paddy rice cultivars.Depolarization of membrane potential was amplified when ammonium was simultaneously added with nitrate into the measure medium,but repolarization was reduced,even disappeared.Brazilian upland rice seedlings had high Vmax of nitrate uptake and low Km,furthermore,Vmax and Km were little affected by ammonium,but Vmax of Wuyujing 3 was reduced significantly.Therefore,inhibition of NH4+ differed obviously between upland rice and paddy rice. 展开更多
关键词 nitrate uptake membrane potential AMMONIUM upland rice paddy rice
下载PDF
Simulation of Soil Organic Carbon Dynamics in Chinese Rice Paddies from 1980 to 2000 被引量:12
19
作者 ZHANG Wen YU Yong-Qiang SUN Wen-Juan HUANG Yao 《Pedosphere》 SCIE CAS CSCD 2007年第1期1-10,共10页
Changes in soil organic carbon (SOC) of rice paddies in China were simulated from 1980 to 2000 by linking a coupled bio-physical model to GIS database. The coupled model consists of two sub-models including Crop-C for... Changes in soil organic carbon (SOC) of rice paddies in China were simulated from 1980 to 2000 by linking a coupled bio-physical model to GIS database. The coupled model consists of two sub-models including Crop-C for simulating net primary productivity and hence residue retention and Soil-C for computing the turnover rates of SOC. The GIS database included parameters of climate, soils and agricultural activities with the resolution of 10 km×10 km. Model simulation indicated that Chinese rice paddies covering 22.6 Mha sequestrated a considerable amount of C, about 0.15±0.07 Pg C from 1980 to 2000. Annual sequestration rate increased sharply from -180±45 kg C ha-1 year-1 in 1980 to 440±170 kg C ha-1 year-1 in 1989. Thereafter, a steady sequestration rate of 460±170 kg C ha-1 year-1 occurred till 1994 and declined since then. Approximately 84% of the Chinese rice paddies sequestrated carbon, while 15% lost carbon and 1% kept balance over the 20 years. Great SOC sequestration occurred in eastern, southern and central China, while a slight decline of SOC existed in some regions of northeastern and southwestern China. 展开更多
关键词 土壤 稻谷 1980年 有机碳
下载PDF
Effect of Water Saving Irrigation Management Practices on Rice Productivity and Methane Emission from Paddy Field 被引量:2
20
作者 Hafsa Jahan Hiya Muhammad Aslam Ali +1 位作者 Md. Abdul Baten Sanjit Chandra Barman 《Journal of Geoscience and Environment Protection》 2020年第9期182-196,共15页
Irrigation water supply is one of the vital components for sustainable rice farming, which is becoming a limiting resource in the changing climatic condition. An experiment was conducted at the research field of Bangl... Irrigation water supply is one of the vital components for sustainable rice farming, which is becoming a limiting resource in the changing climatic condition. An experiment was conducted at the research field of Bangladesh Agricultural University, Mymensingh during dry season from January-June of 2017 to investigate the suitability of Alternate Wet and Dry Irrigation (AWDI) for sustainable rice production and reducing methane emission. The modern rice variety BINA Dhan 10 was used as test crop. There were five irrigation treatments viz. T<sub>1</sub> (saturated condition), T<sub>2</sub> (continuous flooded, 5 cm standing water), T<sub>3</sub> (AWDI-10 cm;irrigated when water level fell 10 cm from surface), T<sub>4</sub> (AWDI-15 cm;irrigated when water level fell 15 cm from surface) and T<sub>5</sub> (AWDI-20 cm;irrigated when water level fell 20 cm from surface). Results of the field trial showed satisfactory grain yield and low seasonal methane emission along with significantly high irrigation water savings (%) in AWDI treated field plots. Among the treatments, T<sub>3</sub> (AWDI-10 cm) and T<sub>4</sub> (AWDI-15 cm) showed higher yield performance (6250kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<span style="color:#FFFFFF;font-family:" white-space:normal;background-color:#d46399;"=""><span style="color: rgb(79, 79, 79);" font-size:14px;white-space:normal;background-color:#ffffff;"=""><sup>-</sup></span></span><sup>1</sup> and 5810 kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<sup><span style="white-space:nowrap;">-</span>1</sup>, respectively) with lower CH<sub>4</sub> emission (reduced up to 36% and 40%, respectively) compared to continuous flooded treatment (T2, CF 5 cm water). In AWDI field plots less irrigation frequency (6 - 9) was required which significantly saved the amount of irrigation water (12% - 24%). Although T<sub>5</sub> (AWDI-20 cm) showed the highest water savings (24%) and lowest CH<sub>4</sub> emission (reduced up to 50%);however the lowest grain yield (4283 kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<span style="color: rgb(79, 79, 79);" font-size:14px;white-space:normal;background-color:#ffffff;"=""><sup>-</sup></span><sup>1</sup>) was found under this treatment. On the other hand, continuously irrigated (T2, 5 cm standing water) field plot showed lower yield (4783 kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#f7f7f7;"=""><sup>.</sup></span>ha<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>1</sup>) but significantly higher methane emissions compared to other treatments during rice cultivation. Water productivity index was also found higher in AWDI treated field plots compared to continuously irrigated field plot. At the reproductive stage of rice plant well-developed aerenchyma tissue was observed in root cortex under the continuous irrigated field plot, which indicates higher diffusion pathway of methane gas from root rhizosphere to the atmosphere compared to other treatments. Therefore, alternate wet and dry irrigation water management practice may be recommended at farmers’ level for sustainable rice production and reducing methane emission during dry winter Boro season which will reduce the cost of production by water saving as well as energy saving. 展开更多
关键词 Water Saving AWDI CH4 GWP rice paddy
下载PDF
上一页 1 2 98 下一页 到第
使用帮助 返回顶部