Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherica...Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.展开更多
Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core ...Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle.展开更多
This paper deals with non-linear vibration of rectangular reticulated shallow shells by applying non-linear elastic theory of such structures established by the author .Us-ing the assumed (generalized)Fourier series s...This paper deals with non-linear vibration of rectangular reticulated shallow shells by applying non-linear elastic theory of such structures established by the author .Us-ing the assumed (generalized)Fourier series solutions for transverse deflection (latticejoint transverse displacement )and force function,weighted means of the trial functions lead to the relations among the coefficients related to the solutions and vibration equ-ation which determines the unknown time function,and then the amplitude -frequeney relations for free vibration and forced vibration due to harmonic force are derived withthe aid of the regular perturbation method and Galerkin procedure,respectively.Nu-merical examples are given as well.展开更多
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal direc...This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.展开更多
Based on fundamental assumptions, an analysis of the constitutive relations be-tween the internal.forces and deformations of discrete rectangular recirculated struturesis given.On the basis of this,an equivalent conti...Based on fundamental assumptions, an analysis of the constitutive relations be-tween the internal.forces and deformations of discrete rectangular recirculated struturesis given.On the basis of this,an equivalent continuum model is adopted and the ap-plication of the principle of virtual work leads to non-linear governing equations and corresponding boundary conditions.展开更多
This paper applied the simplified theory.for multilayer sandwich shells undergoingmoderate small rotations in Ref [1] to shallow shells. The equilibrium equations andboundary conditions of large deflction of orthotrop...This paper applied the simplified theory.for multilayer sandwich shells undergoingmoderate small rotations in Ref [1] to shallow shells. The equilibrium equations andboundary conditions of large deflction of orthotropic and the special case. isotropicshells, are presented.展开更多
In this paper, exact solutions of large deflection of multilayer sandwich shallow shellsunder transverse forces and different boundary conditions are presented. Exact results ofpostbuckling of multilayer sandwich plat...In this paper, exact solutions of large deflection of multilayer sandwich shallow shellsunder transverse forces and different boundary conditions are presented. Exact results ofpostbuckling of multilayer sandwich plates, shallow cylindrical shells and nonlineardeflection of general shallow shells such as spherical shells under inplane edge forcesare also obtained by the same procedure.展开更多
The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by mea...The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.展开更多
In this paper, the nonlinear analysis of stability of functionally graded ma- terial (FGM) sandwich doubly curved shallow shells is studied under thermo-mechanical loads with material properties obeying the general ...In this paper, the nonlinear analysis of stability of functionally graded ma- terial (FGM) sandwich doubly curved shallow shells is studied under thermo-mechanical loads with material properties obeying the general sigmoid law and power law of four ma- terial models. Shells are reinforced by the FGM stiffeners and rest on elastic foundations. Theoretical formulations are derived by the third-order shear deformation theory (TSDT) with the von Karman-type nonlinearity taking into account the initial geometrical im- perfection and smeared stiffener technique. The explicit expressions for determining the critical buckling load and the post-buckling mechanical and thermal load-deflection curves are obtained by the Galerkin method. Two iterative algorithms are presented. The effects of the stiffeners, the thermal element, the distribution law of material, the initial imper- fection, the foundation, and the geometrical parameters on buckling and post-buckling of shells are investigated.展开更多
Nonlinear behavior of single-layer squarely-reticulated shallow spherical shells with geometrical imperfections subjected to a central concentrated (joint) load has been studied in this paper. Using the asymptotic ite...Nonlinear behavior of single-layer squarely-reticulated shallow spherical shells with geometrical imperfections subjected to a central concentrated (joint) load has been studied in this paper. Using the asymptotic iteration method, an analytical characteristic relationship between the non-dimensional load and central deflection is obtained. The resulting asymptotic solution can be used readily to perform the analysis of parameters and predict the buckling critical load. Meanwhile, numerical examples are presented and effects of imperfection factor and boundary conditions on buckling of the structures are discussed. Comparisons with data based on the finite element method show good exactness of the resulting solution.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 19972024)the Key Laboratory of Disaster Forecast and Control in Engineering, Ministry of Education of Chinathe Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.
文摘Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle.
文摘This paper deals with non-linear vibration of rectangular reticulated shallow shells by applying non-linear elastic theory of such structures established by the author .Us-ing the assumed (generalized)Fourier series solutions for transverse deflection (latticejoint transverse displacement )and force function,weighted means of the trial functions lead to the relations among the coefficients related to the solutions and vibration equ-ation which determines the unknown time function,and then the amplitude -frequeney relations for free vibration and forced vibration due to harmonic force are derived withthe aid of the regular perturbation method and Galerkin procedure,respectively.Nu-merical examples are given as well.
文摘This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.
文摘Based on fundamental assumptions, an analysis of the constitutive relations be-tween the internal.forces and deformations of discrete rectangular recirculated struturesis given.On the basis of this,an equivalent continuum model is adopted and the ap-plication of the principle of virtual work leads to non-linear governing equations and corresponding boundary conditions.
文摘This paper applied the simplified theory.for multilayer sandwich shells undergoingmoderate small rotations in Ref [1] to shallow shells. The equilibrium equations andboundary conditions of large deflction of orthotropic and the special case. isotropicshells, are presented.
文摘In this paper, exact solutions of large deflection of multilayer sandwich shallow shellsunder transverse forces and different boundary conditions are presented. Exact results ofpostbuckling of multilayer sandwich plates, shallow cylindrical shells and nonlineardeflection of general shallow shells such as spherical shells under inplane edge forcesare also obtained by the same procedure.
文摘The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.
基金Project supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘In this paper, the nonlinear analysis of stability of functionally graded ma- terial (FGM) sandwich doubly curved shallow shells is studied under thermo-mechanical loads with material properties obeying the general sigmoid law and power law of four ma- terial models. Shells are reinforced by the FGM stiffeners and rest on elastic foundations. Theoretical formulations are derived by the third-order shear deformation theory (TSDT) with the von Karman-type nonlinearity taking into account the initial geometrical im- perfection and smeared stiffener technique. The explicit expressions for determining the critical buckling load and the post-buckling mechanical and thermal load-deflection curves are obtained by the Galerkin method. Two iterative algorithms are presented. The effects of the stiffeners, the thermal element, the distribution law of material, the initial imper- fection, the foundation, and the geometrical parameters on buckling and post-buckling of shells are investigated.
基金Supported in part by the Program for New Century Excellent Talents in University by the Ministry of Education of China (NCET-04-0373)
文摘Nonlinear behavior of single-layer squarely-reticulated shallow spherical shells with geometrical imperfections subjected to a central concentrated (joint) load has been studied in this paper. Using the asymptotic iteration method, an analytical characteristic relationship between the non-dimensional load and central deflection is obtained. The resulting asymptotic solution can be used readily to perform the analysis of parameters and predict the buckling critical load. Meanwhile, numerical examples are presented and effects of imperfection factor and boundary conditions on buckling of the structures are discussed. Comparisons with data based on the finite element method show good exactness of the resulting solution.