We calculated the crustal stress field using the composite focal mechanism method based on the P-wave initial motion polarity data of the Tengchong volcanic area from January 2011 to April 2019 obtained from the Bulle...We calculated the crustal stress field using the composite focal mechanism method based on the P-wave initial motion polarity data of the Tengchong volcanic area from January 2011 to April 2019 obtained from the Bulletin of Seismological Observations of Chinese stations.The magnitude range of earthquakes used in this study is 0–4,and their magnitudes are mainly approximately 1.0.To investigate the infl uence of the source location on the stress fi eld and obtain reliable stress fi elds of the study area,we applied the double-diff erence algorithm to relocate the seismic events,obtaining more accurate and reliable relative positions of seismic events with a clearer seismic belt.On the basis of relocation results,the study on the stress fi eld along the fault zone was conducted,and the infl uence of seismic event position on the stress fi eld was analyzed.Results show that,fi rst,the current stress regime in the shallow crust of the Tengchong volcanic area is strike-slip faulting,the orientation of the principal compressive stress axis is NE–SW,the orientation of the principal extension stress axis is SE–NW,the principal compressive and extension stress axes are nearly horizontal,and the dip angle of intermediate principal stress axis is relatively large.This reflects that the volcanic and seismic activities in the Tengchong volcanic area are mainly controlled by the collision and squeezing eff ect of the Indian–Eurasian plate.It also refl ects that the current tensile action caused by deep magma activity has little infl uence on the shallow crustal stress field.Second,the stress field along fault zones reveals that there exist local stress fi elds,such as the thrust stress regime at the strike-slip fault terminal area,which is consistent with the compressional area at the intersection of conjugate strike-slip faults indicated by previous study.Third,the stress fi eld results are consistent,regardless of using the original location in the bulletin or the relocated location,indicating that the infl uence of the event location error can be neglected when there are suffi cient data and refl ecting the stability of the composite focal mechanism method.The findings can serve as a reference for investigating geological structure movement,seismic activities,and volcanic activities in the Tengchong volcanic area.展开更多
In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence ...In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.展开更多
Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study propos...Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.展开更多
犹豫模糊语言集(hesitant fuzzy linguistic term set,HFLTS)是指语言变量的取值为语言术语集的一个有序且连贯的子集.文章对基于HFLTS的理论发展进行了综述.首先介绍了HFLTS的含义及起源,随后分别对犹豫模糊语言信息的融合理论、测度...犹豫模糊语言集(hesitant fuzzy linguistic term set,HFLTS)是指语言变量的取值为语言术语集的一个有序且连贯的子集.文章对基于HFLTS的理论发展进行了综述.首先介绍了HFLTS的含义及起源,随后分别对犹豫模糊语言信息的融合理论、测度理论、偏好关系理论以及决策方法进行了概述.最后展望了HFLTS理论未来的研究方向.展开更多
基金the National Scholarship Fundthe National Natural Science Foundation of China(Nos.41704053,42174074,41674055)the East China University of Technology Research Foundation for Advanced Talents(ECUT)(DHBK2019084)for financial support。
文摘We calculated the crustal stress field using the composite focal mechanism method based on the P-wave initial motion polarity data of the Tengchong volcanic area from January 2011 to April 2019 obtained from the Bulletin of Seismological Observations of Chinese stations.The magnitude range of earthquakes used in this study is 0–4,and their magnitudes are mainly approximately 1.0.To investigate the infl uence of the source location on the stress fi eld and obtain reliable stress fi elds of the study area,we applied the double-diff erence algorithm to relocate the seismic events,obtaining more accurate and reliable relative positions of seismic events with a clearer seismic belt.On the basis of relocation results,the study on the stress fi eld along the fault zone was conducted,and the infl uence of seismic event position on the stress fi eld was analyzed.Results show that,fi rst,the current stress regime in the shallow crust of the Tengchong volcanic area is strike-slip faulting,the orientation of the principal compressive stress axis is NE–SW,the orientation of the principal extension stress axis is SE–NW,the principal compressive and extension stress axes are nearly horizontal,and the dip angle of intermediate principal stress axis is relatively large.This reflects that the volcanic and seismic activities in the Tengchong volcanic area are mainly controlled by the collision and squeezing eff ect of the Indian–Eurasian plate.It also refl ects that the current tensile action caused by deep magma activity has little infl uence on the shallow crustal stress field.Second,the stress field along fault zones reveals that there exist local stress fi elds,such as the thrust stress regime at the strike-slip fault terminal area,which is consistent with the compressional area at the intersection of conjugate strike-slip faults indicated by previous study.Third,the stress fi eld results are consistent,regardless of using the original location in the bulletin or the relocated location,indicating that the infl uence of the event location error can be neglected when there are suffi cient data and refl ecting the stability of the composite focal mechanism method.The findings can serve as a reference for investigating geological structure movement,seismic activities,and volcanic activities in the Tengchong volcanic area.
基金supported by the Research Project of Tianjin Earthquake Agency (No. Yb202101, Zd202101)
文摘In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.
基金University of Malaya Research under Grant No.RP013B-15SUS,Postgraduate Research Fund(PG098-2015A)
文摘Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.
文摘犹豫模糊语言集(hesitant fuzzy linguistic term set,HFLTS)是指语言变量的取值为语言术语集的一个有序且连贯的子集.文章对基于HFLTS的理论发展进行了综述.首先介绍了HFLTS的含义及起源,随后分别对犹豫模糊语言信息的融合理论、测度理论、偏好关系理论以及决策方法进行了概述.最后展望了HFLTS理论未来的研究方向.