Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 ...Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 to 333 K and shows good potential in the adsorption chiller in terms of the high cooling output. A double-effect adsorption chiller could provide a higher Coefficient Of Performance (COP) than that of a single-effect chiller. In this paper, we developed a measuring method for the amount of adsorption in the first and second adsorber in a double-effect adsorption chiller and measured the adsorption and desorption rate based on the volumetric method. We calculated the COP of the adsorption chiller with the quantity of adsorbent obtained in the experiment. In the experiments, the quantity of adsorbent in the first adsorber was 0.14 g-H<sub>2</sub>O/g-Ads at the pressure 20 kPa and a desorption temperature over 100℃. The amount of adsorbent in the second adsorber was equal to that of the first adsorber. By analyzing the COP with the experimental results, the COP value was calculated to be over 1.0 (–) at any desorption temperature. The COP of the double-effect cycle was higher than that of single-effect cycle.展开更多
Cost-effectively,eco-friendly rechargeable aqueous zinc-ion batteries(AZIBs)have reserved widespread concerns and become outstanding candidate in energy storage systems.However,the progress pace of AZIBs suffers from ...Cost-effectively,eco-friendly rechargeable aqueous zinc-ion batteries(AZIBs)have reserved widespread concerns and become outstanding candidate in energy storage systems.However,the progress pace of AZIBs suffers from limitation of suitable and affordable cathode materials.Herein,a double-effect strategy is realized in a one-step hydrothermal treatment to prepare V_(2)O_(5)nanoribbons with intercalation of Ce and introduction of abundant oxygen defects(Od-Ce@V_(2)O_(5))to enhance electrochemical performance synergistically.Coupled with the theoretical calculation results,the introduction of Ce ions intercalation and oxygen vacancies in V2O5 structure enhances the electrical conductivity,reduces the adsorption energy of zinc ions,enlarges the interlayer distance,renders the structure more stable,and facilitates rapid diffusion kinetics.As expected,the desirable cathode delivers the reversible capacity of 444 mAh·g^(−1)at 0.5 A·g^(−1)and shows excellent Coulombic efficiency,as well as an extraordinary energy density of 304.9 Wh·kg^(−1).The strategy proposed here may aid in the further development of cathode materials with stable performance for AZIBs.展开更多
文摘Here, we propose a double-effect adsorption chiller with a zeolite adsorbent (FAM-Z01) for utilization of waste heat. The FAM-Z01 adsorbent has the potential to recover waste heat in low temperatures ranging from 353 to 333 K and shows good potential in the adsorption chiller in terms of the high cooling output. A double-effect adsorption chiller could provide a higher Coefficient Of Performance (COP) than that of a single-effect chiller. In this paper, we developed a measuring method for the amount of adsorption in the first and second adsorber in a double-effect adsorption chiller and measured the adsorption and desorption rate based on the volumetric method. We calculated the COP of the adsorption chiller with the quantity of adsorbent obtained in the experiment. In the experiments, the quantity of adsorbent in the first adsorber was 0.14 g-H<sub>2</sub>O/g-Ads at the pressure 20 kPa and a desorption temperature over 100℃. The amount of adsorbent in the second adsorber was equal to that of the first adsorber. By analyzing the COP with the experimental results, the COP value was calculated to be over 1.0 (–) at any desorption temperature. The COP of the double-effect cycle was higher than that of single-effect cycle.
基金financial support provided by the National Natural Science Foundation of China(Nos.U21A2077,21971145,and 21871164)the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2021ZD05 and ZR2019MB024)Young Scholars Program of Shandong University(No.2017WLJH15).
文摘Cost-effectively,eco-friendly rechargeable aqueous zinc-ion batteries(AZIBs)have reserved widespread concerns and become outstanding candidate in energy storage systems.However,the progress pace of AZIBs suffers from limitation of suitable and affordable cathode materials.Herein,a double-effect strategy is realized in a one-step hydrothermal treatment to prepare V_(2)O_(5)nanoribbons with intercalation of Ce and introduction of abundant oxygen defects(Od-Ce@V_(2)O_(5))to enhance electrochemical performance synergistically.Coupled with the theoretical calculation results,the introduction of Ce ions intercalation and oxygen vacancies in V2O5 structure enhances the electrical conductivity,reduces the adsorption energy of zinc ions,enlarges the interlayer distance,renders the structure more stable,and facilitates rapid diffusion kinetics.As expected,the desirable cathode delivers the reversible capacity of 444 mAh·g^(−1)at 0.5 A·g^(−1)and shows excellent Coulombic efficiency,as well as an extraordinary energy density of 304.9 Wh·kg^(−1).The strategy proposed here may aid in the further development of cathode materials with stable performance for AZIBs.