Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
An investigation of an aqua ammonia atherption-resorption heat pump(ARHP) is made on the basis of experimental analysis and research. The results ofcomputer simulation are compared with the experimental data , and the...An investigation of an aqua ammonia atherption-resorption heat pump(ARHP) is made on the basis of experimental analysis and research. The results ofcomputer simulation are compared with the experimental data , and the relations be-tween the coefficient of performance (COP) of an aqua ammonia ARHP and its mainoperatins parameters, such as temperature and pressure,are obtained by means ofcomputer simulation.展开更多
The dynamic model of LiBr absorption heat pump in shut-down process is established. The simulation results show good agreement with the experiments. The dynamic performance of high-pressure generator, low-pressure gen...The dynamic model of LiBr absorption heat pump in shut-down process is established. The simulation results show good agreement with the experiments. The dynamic performance of high-pressure generator, low-pressure generator and heat exchanger are analyzed in detail. The proper shut-down mode of the heat pump is presented,which, in consideration of solution parameters, has a great effect on the possibility of crystallization of some components.展开更多
The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used a...The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.展开更多
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
文摘An investigation of an aqua ammonia atherption-resorption heat pump(ARHP) is made on the basis of experimental analysis and research. The results ofcomputer simulation are compared with the experimental data , and the relations be-tween the coefficient of performance (COP) of an aqua ammonia ARHP and its mainoperatins parameters, such as temperature and pressure,are obtained by means ofcomputer simulation.
基金This paper is supported by thy UTC RongHong foundation
文摘The dynamic model of LiBr absorption heat pump in shut-down process is established. The simulation results show good agreement with the experiments. The dynamic performance of high-pressure generator, low-pressure generator and heat exchanger are analyzed in detail. The proper shut-down mode of the heat pump is presented,which, in consideration of solution parameters, has a great effect on the possibility of crystallization of some components.
文摘The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.