Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On...Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.展开更多
The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from gen...The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from general Navier Stokes equation.In order to verify the correctness of the anti pressure formula,the authors have calculated the magnetic field distribution of seal structure and have gotten the maximum still anti pressure.Finally,the authors have verified the influence of speed and stroke on the seal anti pressure.展开更多
Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, re...Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..展开更多
The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the u...The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.展开更多
This article introduces a new type of magnetic sealing mechanism that reduces the lubrication oil pollution and media gaseous leakage in general reciprocating machinery including air compressors and refrigerators. The...This article introduces a new type of magnetic sealing mechanism that reduces the lubrication oil pollution and media gaseous leakage in general reciprocating machinery including air compressors and refrigerators. The feasible function and reliable performance of this new sealing mechanism are introduced and analyzed in this paper. The computer aided design, modeling and analysis are being used to study this new sealing mechanism, and the prototype of this sealing mechanism is being tested. The study indicated the proper function of this sealing mechanism. The major advantages of this sealing mechanism include: improved sealing capacity to prevent the gaseous leakage and oil leakage, simple and compact in structure, lower precision requirement on surfaces of reciprocating pistons and shafts in production and manufacturing, and longer services in sealing life span. Also there is almost no frictional loss during the reciprocating motion of piston or shaft.展开更多
基金supported by National Basic Research Program of China(973 Program,Grant No. 2009CB724304)Key Research Program of the State Key Laboratory of Tribology of Tsinghua University,China (Grant No. SKLT08A06)National Natural Science Foundation of China(Grant No. 50975157)
文摘Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
基金National Natural Science F oundation of China(No.59705004)
文摘The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from general Navier Stokes equation.In order to verify the correctness of the anti pressure formula,the authors have calculated the magnetic field distribution of seal structure and have gotten the maximum still anti pressure.Finally,the authors have verified the influence of speed and stroke on the seal anti pressure.
基金This project is supported by National Natural Science Foundation of China(No.50005019).
文摘Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..
文摘The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.
文摘This article introduces a new type of magnetic sealing mechanism that reduces the lubrication oil pollution and media gaseous leakage in general reciprocating machinery including air compressors and refrigerators. The feasible function and reliable performance of this new sealing mechanism are introduced and analyzed in this paper. The computer aided design, modeling and analysis are being used to study this new sealing mechanism, and the prototype of this sealing mechanism is being tested. The study indicated the proper function of this sealing mechanism. The major advantages of this sealing mechanism include: improved sealing capacity to prevent the gaseous leakage and oil leakage, simple and compact in structure, lower precision requirement on surfaces of reciprocating pistons and shafts in production and manufacturing, and longer services in sealing life span. Also there is almost no frictional loss during the reciprocating motion of piston or shaft.