The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inv...The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.展开更多
With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consistin...With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consisting of a QCR and surface micro-beam arrays.The frequency shift that was induced by micro-beams with consideration of strain-gradients is discussed in detail and some useful results are obtained,which have important significance in resonator design and applications.展开更多
We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account t...We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,展开更多
Aim To provide technical parameters for development of quartz gyro. Methods Theory of elastic beam was applied to piezoelectric beam. Based on the concept of equivalent volume force and energy conservation, the f...Aim To provide technical parameters for development of quartz gyro. Methods Theory of elastic beam was applied to piezoelectric beam. Based on the concept of equivalent volume force and energy conservation, the formula of electrode location efficiency was derived. And the electric system was compared with the dynamic one according to the principle of equivalent circuit for piezoelectric crystal, and the general formulae of the parameters for the equivalent circuit, R n L n C n , were derived. Results and Conclusion Optimum electrode location is chosen, and the derived equivalent circuit parameters are the theoretical base of the circuit design for quartz gyro.展开更多
提出了一种新颖的用于测量微结构力学性能的弯曲测试法——微射流驱动的弯曲测试法(microjet-driving microbending test method,JDBT)。该方法利用气体微射流连续冲击微结构,使之发生弯曲变形,通过获取结构的尺寸参数和形变位移,并代...提出了一种新颖的用于测量微结构力学性能的弯曲测试法——微射流驱动的弯曲测试法(microjet-driving microbending test method,JDBT)。该方法利用气体微射流连续冲击微结构,使之发生弯曲变形,通过获取结构的尺寸参数和形变位移,并代入结构的变形公式,从而反解出材料的力学性能参量。利用动量定理推导了微射流作用力公式,对某型号石英摆片式加速度计的敏感结构进行了理论建模,并用COMSOL MULTIPHYSICS有限元软件对理论公式进行了修正,接着通过JDBT实验得到了不同流量下的结构位移,最后将结构尺寸和结构形变位移代入修正后的理论公式,从而得到了石英玻璃的弹性模量约为71GPa,比纳米压痕仪测试的结果要小14%左右,与文献中提到的结果吻合较好。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11272127 and51425006)the Research Fund for the Doctoral Program of Higher Education of China(No.20130142110022)the Grant from the Impact and Safety of Coastal Engineering Initiative Program of Zhejiang Provincial Government at Ningbo University(No.zj1213)
文摘The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.
基金supported by the National Science Foundation of China(Grants 11272127 and 51435006)Research Fund for the Doctoral Program of Higher Education of China(Grant 20130142110022)the Grant from the Impact and Safety of Coastal Engineering Initiative Program of Zhejiang Provincial Government at Ningbo University(Grant zj1213)
文摘With introduction of the first-order strain-gradient of surface micro-beams into the energy density function,we developed a two-dimensional dynamic model for a compound quartz crystal resonator(QCR) system,consisting of a QCR and surface micro-beam arrays.The frequency shift that was induced by micro-beams with consideration of strain-gradients is discussed in detail and some useful results are obtained,which have important significance in resonator design and applications.
基金supported by the National Natural Science Foundation of China(11272127 and 51435006)the Research Fund for the Doctoral Program of Higher Education of China(20130142110022)
文摘We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,
文摘Aim To provide technical parameters for development of quartz gyro. Methods Theory of elastic beam was applied to piezoelectric beam. Based on the concept of equivalent volume force and energy conservation, the formula of electrode location efficiency was derived. And the electric system was compared with the dynamic one according to the principle of equivalent circuit for piezoelectric crystal, and the general formulae of the parameters for the equivalent circuit, R n L n C n , were derived. Results and Conclusion Optimum electrode location is chosen, and the derived equivalent circuit parameters are the theoretical base of the circuit design for quartz gyro.
文摘提出了一种新颖的用于测量微结构力学性能的弯曲测试法——微射流驱动的弯曲测试法(microjet-driving microbending test method,JDBT)。该方法利用气体微射流连续冲击微结构,使之发生弯曲变形,通过获取结构的尺寸参数和形变位移,并代入结构的变形公式,从而反解出材料的力学性能参量。利用动量定理推导了微射流作用力公式,对某型号石英摆片式加速度计的敏感结构进行了理论建模,并用COMSOL MULTIPHYSICS有限元软件对理论公式进行了修正,接着通过JDBT实验得到了不同流量下的结构位移,最后将结构尺寸和结构形变位移代入修正后的理论公式,从而得到了石英玻璃的弹性模量约为71GPa,比纳米压痕仪测试的结果要小14%左右,与文献中提到的结果吻合较好。