期刊文献+
共找到6,771篇文章
< 1 2 250 >
每页显示 20 50 100
A Havelock Source Panel Method for Near-surface Submarines 被引量:3
1
作者 Tim Gourlay Edward Dawson 《Journal of Marine Science and Application》 CSCD 2015年第3期215-224,共10页
A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the ... A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the method include pressure field, pressure drag, wave resistance, vertical force, trim moment and wave pattern. Comparisons are made with model tests for wave resistance of Series 58 and DARPA SUBOFF hulls, as well as with wave resistance, lift force and trim moment of three length-to-diameter variants of the DSTO Joubert submarine hull. It is found that the Havelock source panel method is capable of determining with reasonable accuracy wave resistance, vertical force and trim moment for submarine hulls. Further experimental data are required in order to assess the accuracy of the method for pressure field and wave pattern prediction. The method is implemented in the computer code“HullWave”and offers potential advantages over RANS-CFD codes in terms of speed, simplicity and robustness. 展开更多
关键词 near-surface submarine Havelock source panel method submarine hull wave resistance
下载PDF
Circadian misalignment on submarines and other non-24-h environments – from research to application 被引量:2
2
作者 Jin-Hu Guo Xiao-Hong Ma +4 位作者 Huan Ma Yin Zhang Zhi-Qiang Tian Xin Wang Yong-Cong Shao 《Military Medical Research》 SCIE CSCD 2021年第1期90-102,共13页
Circadian clocks have important physiological and behavioral functions in humans and other organisms, which enable organisms to anticipate and respond to periodic environmental changes. Disturbances in circadian rhyth... Circadian clocks have important physiological and behavioral functions in humans and other organisms, which enable organisms to anticipate and respond to periodic environmental changes. Disturbances in circadian rhythms impair sleep, metabolism, and behavior. People with jet lag, night workers and shift workers are vulnerable to circadian misalignment. In addition, non-24-h cycles influence circadian rhythms and cause misalignment and disorders in different species, since these periods are beyond the entrainment ranges. In certain special conditions, e.g., on submarines and commercial ships, non-24-h watch schedules are often employed, which have also been demonstrated to be deleterious to circadian rhythms. Personnel working under such conditions suffer from circadian misalignment with their on-watch hours, leading to increased health risks and decreased cognitive performance. In this review, we summarize the research progress and knowledge concerning circadian rhythms on submarines and other environments in which non-24-h watch schedules are employed. 展开更多
关键词 Circadian rhythm Circadian clock Entrainment range Metabolism ALERTNESS submarinE
下载PDF
Cybersecurity for Allied Future Submarines
3
作者 Keith F. Joiner Simon Reay Atkinson +1 位作者 Pete Christensen Elena Sitnikova 《World Journal of Engineering and Technology》 2018年第4期696-712,共17页
Cyber has become a supposedly cheap first-strike weapon of political choice by potential adversaries in a milieu placing insurgency, terrorism, international crime and state-based influences in close un-regulated prox... Cyber has become a supposedly cheap first-strike weapon of political choice by potential adversaries in a milieu placing insurgency, terrorism, international crime and state-based influences in close un-regulated proximity. The merging of electronic and cyber warfare means that not even submarines, however unconnected or firewalled they may be, are immune. The quantum attack surface of submarines is as much in their past, as they are in their designs today and their operations tomorrow: they must survive to be credible and ideally they should even be a contemporary offensive cyber deterrent. Such critical defensive systems require robust security systems engineering and cybersecurity test and evaluation to build and sustain their cyber-resilience. This paper uses Australia’s future submarine program [1]1 to outline key facets needed in a submarine program to achieve cyber resilience, including how to adapt U.S. Department of Defense (DoD) best practices to engineer, test and sustain cyber-resilient submarine systems. Strategies are needed that provision sovereign-owned and operated land-based test sites to design, build, demonstrate and sustain critical submarine systems. This work is most relevant to countries allied to the U.S. and importing submarine capabilities, such as within lesser European powers and also in the Indo-Pacific where both cyber warfare and submarines are proliferating. 展开更多
关键词 Cyber-Resilience FUTURE submarinE Design Land-Based TEST Sites Quantum Attack Surface TEST and Evaluation
下载PDF
Numerical study on local scour characteristics around submarine pipelines in the Yellow River Delta silty sandy soil under waves and currents 被引量:1
4
作者 Peng Yu Ruigeng Hu +4 位作者 Jike Zhang Qi Yang Jieru Zhao Lei Cao Chenghao Zhu 《Deep Underground Science and Engineering》 2024年第2期182-196,共15页
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun... Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area. 展开更多
关键词 local scour numerical simulation submarine pipelines Yellow River Delta
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
5
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
Study of the Dynamic Characteristics of A Cone-Shaped Recovery System on Submarines for Recovering Autonomous Underwater Vehicle
6
作者 MENG Ling-shuai LIN Yang +1 位作者 GU Hai-tao SU Tsung-Chow 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期387-399,共13页
National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and relia... National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and reliable recovery systems directly improves the safety and operational efficiency of submarines equipped with AUVs.In this paper,based on aerial refueling technology,a cone-shaped recovery system with two different guiding covers(closed structure and frame structure)is applied to the submarine.By taking the Suboff model as the research object,STAR-CCM was used to study the influence of the installation position of the recovery system,and the length of the rigid rod,on the Suboff model.It was found that when the recovery system is installed in the middle and rear of the Suboff model at the same velocity and the same length of the rigid rod,the Suboff model has the good stability and less drag.It experiences the largest drag when being installed in the front of the rigid rod.Moreover,when the recovery system is installed in the front and middle of the rigid rod,the drag increases as its length increases,and the lift decreases as its length increases.Compared with the closed structure guiding cover,the Suboff model will have less drag and better stability when the recovery system uses the frame structure guiding cover.Besides,the deflection and vibration of the rigid rod were also analyzed via mathematical theory. 展开更多
关键词 cone-shaped recovery system submarinE computational fluid dynamics(CFD) hydrodynamics DEFLECTION vibration
下载PDF
Technological Perspectives for Propulsion on Nuclear Attack Submarines
7
作者 Luciano Ondir Freire Delvonei Alves de Andrade 《World Journal of Nuclear Science and Technology》 2016年第4期309-319,共11页
This work aimed at proposing a new combination of technologies to improve military performances and reduce costs of nuclear attack submarines, without overlooking safety constraints. The last generation of nuclear att... This work aimed at proposing a new combination of technologies to improve military performances and reduce costs of nuclear attack submarines, without overlooking safety constraints. The last generation of nuclear attack submarines increased size to meet safety and operational requirements, imposing huge burden on costs side, reducing fleet size. The limitations of current Technologies employed were qualitatively discussed, explaining their limitations. There are new technologies (plate and shell heat exchangers) and architectural choices, like passive safety, and segregation of safety and normal systems, which may lead to reduction of costs and size of submarines. A qualitative analysis was provided on this combination of technologies, stressing their commercial nature and maturity, which reduced risks. The qualitative analysis showed the strong and weak points of this proposal, which adopted the concept of strength in numbers. Concluding, new Technologies enabled the existence of 3800 t nuclear attack submarines with powerful propulsion systems and good acoustic discretion. 展开更多
关键词 Plate and Shell Heat Exchangers Nuclear Attack submarines PWR
下载PDF
The Middle Miocene lobe-shaped and band-shaped submarine fans in the Lingshui Sag,Qiongdongnan Basin:source-to-sink system,genesis and implication
8
作者 Xingzong Yao Congjun Feng +2 位作者 Hongjun Qu Min Zhang Daming Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期61-79,共19页
Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate... Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag. 展开更多
关键词 submarine fan source-to-sink system genesis mechanism Middle Miocene Lingshui Sag
下载PDF
Sedimentary architecture of submarine channel-lobe systems under different seafloor topography:Insights from the Rovuma Basin offshore East Africa
9
作者 Mei Chen Sheng-He Wu +6 位作者 Rui-Feng Wang Jia-Jia Zhang Peng-Fei Xie Min Wang Xiao-Feng Wang Ji-Tao Yu Qi-Cong Xiong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期125-142,共18页
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w... Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems. 展开更多
关键词 submarine fan Seafloor topography Sedimentary architecture Slope system SW Indian ocean
下载PDF
Bending Failure Mode and Prediction Method of the Compressive Strain Capacity of A Submarine Pipeline with Dent Defects
10
作者 HOU Fu-heng JIA Lu-sheng +3 位作者 CHEN Yan-fei ZHANG Qi ZHONG Rong-feng WANG Chun-sha 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期636-647,共12页
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression... A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline. 展开更多
关键词 submarine pipeline dent defect bending load local buckling compressive strain capacity
下载PDF
Submarine Landslides on the North Continental Slope of the South China Sea 被引量:14
11
作者 WANG Weiwei WANG Dawei +4 位作者 WU Shiguo VOKER David ZENG Hongliu CAI Guanqiang LI Qingping 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期83-100,共18页
Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In... Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and overpressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales. 展开更多
关键词 SOUTH China Sea submarinE LANDSLIDES SEISMIC identification TRIGGERING mechanism
下载PDF
Experi mental Study on Vortex-Induced Vibrations of Submarine Pipeline near Seabed Boundary in Ocean Currents 被引量:14
12
作者 杨兵 高福平 +1 位作者 吴应湘 李东晖 《China Ocean Engineering》 SCIE EI 2006年第1期113-121,共9页
Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic ... Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter. 展开更多
关键词 submarine pipeline vortex-induced vibrations ocean current SEABED
下载PDF
Study on Interaction Relationship for Submarine Pipeline with Axial Corrosion Defects 被引量:10
13
作者 陈严飞 李昕 +1 位作者 周晶 关炯 《China Ocean Engineering》 SCIE EI 2008年第3期359-370,共12页
Corrosion is one of the main reasons to cause the operation accident of submarine oil and gas transmission pipelines. As the major corrosion pattern in submarine pipelines, the effects of corrosion clusters consisting... Corrosion is one of the main reasons to cause the operation accident of submarine oil and gas transmission pipelines. As the major corrosion pattern in submarine pipelines, the effects of corrosion clusters consisting of the adjacent corrosion defects on failure pressure are investigated through non-linear large-deformation finite element method. Typically, the failure behavior and limit strength of submarine pipeline with axial groove- groove corrosion defect pair exposed to interhal pressure are analyzed. The effects of corrosion depth and axial spacing between a pair of corrosion defects on failure pressure are concluded. An interaction relationship for corrosion defects in pipelines, as well as prediction formulations for assessing the remaining strength of corroded pipelines are proposed. The expressions based on the proposed interaction relationship give more accurate results than the methods used in the existing design guidelines. 展开更多
关键词 submarine pipeline corrosion defects interaction relationship damage mechanism failure pressure
下载PDF
Effect of Internal Flow on Vortex-Induced Vibration of Submarine Free Spanning Pipelines 被引量:10
14
作者 娄敏 丁坚 +1 位作者 郭海燕 董晓林 《China Ocean Engineering》 SCIE EI 2005年第1期147-154,共8页
At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect ... At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan's wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite element approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be more pronounced with the increase of the span length and can be weakened in the presence of the axial tension. 展开更多
关键词 vortex-induced vibration internal flow free span submarine pipelines
下载PDF
Analysis on Buckling Performance of Submarine Pipelines During Deepwater Pipe-Laying Operation 被引量:12
15
作者 袁林 龚顺风 +2 位作者 金伟良 李志刚 赵冬岩 《China Ocean Engineering》 SCIE EI 2009年第2期303-316,共14页
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation... Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice. 展开更多
关键词 submarine pipeline BUCKLING deep water pipe-laying nonlinear ring theory virtual work principle numerical simulation
下载PDF
Application of Tube-Packaged FBG Strain Sensor in Vibration Experi ment of Submarine Pipeline Model 被引量:11
16
作者 任亮 李宏男 +2 位作者 周晶 孙丽 李东升 《China Ocean Engineering》 SCIE EI 2006年第1期155-164,共10页
Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, esp... Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, especially fit for measureroent applications in harsh environment. In this study, a novel FBG (fiber Bragg grating) strain sensor, which is packaged in a 1.2 mm stainless steel tube with epoxy resin, is developed. Experiments are conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and exhibits promising potentials. Five tube-packaged strain FBG sensors have been applied to the vibration experiment of a submarine pipeline model. The strain measttred with the FBG sensor agrees well with that measttred with the electric resistance strain sensor. 展开更多
关键词 fiber bragg grating sensor strain sensor tube-packaged submarine pipeline model
下载PDF
The early-middle Miocene submarine fan system in the Pearl River Mouth Basin, South China Sea 被引量:7
17
作者 Wang Yongfeng Wang Yingmin +3 位作者 Xu Qiang Li Dong Zhuo Haiteng Zhou Wei 《Petroleum Science》 SCIE CAS CSCD 2012年第1期1-9,共9页
Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary pr... Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary processes of submarine fans in SQ21 (SQ21 refers to the 3rd-order sequence with its bottom boundary 21 Ma), a sedimentary model of the sand-rich fans is established and the main factors controlling fan deposition are detailed. The results indicate that from early to middle Miocene the Pearl River Mouth Basin developed seven 3rd-order sequences in all, with each lowstand systems tract (LST) of the sequence corresponding to submarine fans. However, only the fans in SQ13.8 and SQ21 are sand-rich fans, the others being mud-rich fans. The cores reveal that the submarine fans in the Pearl River Mouth Basin developed five lithofacies: (1) mud clast-bearing sandstone, interpreted as channel deposits; (2) typical turbidite sandstones, also interpreted as channel deposits; (3) thin-bedded sandstone and mudstone, interpreted as channel-levee complex deposits; (4) massive sandstones, interpreted as lobe deposits; (5) massive mudstone, interpreted as hemipelagic mud. The sand-rich submarine fans in the Pearl River Mouth Basin mainly developed in LST, and in LST reverse faults were active, which led to the formation of accommodation on the shelf. Different from the theory of classic sequence stratigraphy, the accommodation on the shelf captures terrigenous debris transported by the Pearl River, and the uplift at the edge of shelf serves as a "Linear Source" for the deep water area instead of the Pearl River. Therefore, the fans mainly derived from the eroded debris from the uplift. Factors controlling fan deposition include the basin's tectonic framework, the evolution of the slope break, relative sea-level changes as well as the evolution of the fault system, and the fans are formed under the combination of the above factors. 展开更多
关键词 submarine fan lithofacies reverse fault sedimentary process controlling factor
下载PDF
Experimental Study on Free Spanning Submarine Pipeline Under Dynamic Excitation 被引量:9
18
作者 李昕 刘亚坤 +2 位作者 周晶 马恒春 朱彤 《China Ocean Engineering》 SCIE EI 2002年第4期537-548,共12页
Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking t... Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclusions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments. 展开更多
关键词 free spanning submarine pipeline underwater shaking table model experiment dynamic response factor analysis
下载PDF
Runout prediction and dynamic characteristic analysis of a potential submarine landslide in Liwan 3-1 gas field 被引量:6
19
作者 XIU Zongxiang LIU Lejun +3 位作者 XIE Qiuhong LI Jiagang HU Guanghai YANG Jianghui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第7期116-122,共7页
A large number of submarine landslides with different scales have been identified in the canyon area of the submarine pipeline route of Liwan 3-1 gas field. There is still much chance that submarine slope failures wou... A large number of submarine landslides with different scales have been identified in the canyon area of the submarine pipeline route of Liwan 3-1 gas field. There is still much chance that submarine slope failures would happen, and the following mass movement would present great risk to the submarine pipeline. In view of this, a numerical prediction method based on Eulerian-Eulerian two-phase flow model is introduced to simulate the mass movement of potential submarine landslides. The sliding soil and ambient water are respectively simulated by Herschel-Bulkley rheology model and Newtonian fluid model. The turbulence is simulated using the k-e model. Compared with both the experiment data and Bing result, the two-phase flow model shows a good accuracy, and its result is more close to the actual situation; the dynamic coupling between soil and ambient water can be effectively simulated and the phenomena of hydroplaning and head detachment can be obtained. Finally, the soil movement of a potential submarine landslide is simulated as an example, according to the seismic profile in the canyon area. The result shows that the hydroplaning occurs during the movement process. The runout distance calculated by the two-phase flow model is 877 m, which is 27.1% larger than the Bing result. However, the peak front velocity of soil is relative small, with a maximum value of 8.32 m/s. The Bing program with a simple and rapid process can be used for a preliminary evaluation, while the two-phase flow model is more appropriate for an accurate assessment. 展开更多
关键词 submarine landslide Eulerian-Eulerian two-phase flow model Herschel-Bulkley model HYDROPLANING
下载PDF
Mechanism of local scour around submarine pipelines based on numerical simulation of turbulence model 被引量:5
20
作者 LUE Lin LI Yucheng CHEN Bing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第2期142-152,共11页
The mechanism of local scour around submarine pipelines is studied numerically based on a renormalized group (RNG) turbulence model. To validate the numerical model, the equilibrium profiles of local scour for two c... The mechanism of local scour around submarine pipelines is studied numerically based on a renormalized group (RNG) turbulence model. To validate the numerical model, the equilibrium profiles of local scour for two cases are simulated and compared with the experimental data. It shows that the RNG turbulence model can give an appropriate prediction for the configuration of equilibrium scour hole, and it is applicable to this situation. The local scour mechanism around submarine pipelines including the flow structure, shear stress distribution and pressure field is then analyzed and compared with experiments. For further comparison and validation, especially for the flow structure, a numerical calculation employing the large eddy simulation (LES) is also conducted. The numerical results of RNG demonstrate that the critical factor governing the equilibrium profile is the seabed shear stress distribution in the case of bed load sediment transport, and the two-equation RNG turbulence model coupled with the law of wall is capable of giving a satisfying estimation for the bed shear stress. Moreover, the piping phenomena due to the great difference of pressure between the upstream and downstream parts of pipelines and the vortex structure around submarine pipelines are also simulated successfully, which are believed to be the important factor that lead to the onset of local scour. 展开更多
关键词 submarine pipeline mechanism of local scour renormalized group turbulence model large eddy simulation PIPING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部