期刊文献+
共找到1,792篇文章
< 1 2 90 >
每页显示 20 50 100
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
1
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
Performance and Application of Double-layered Microcapsule Corrosion Inhibitors
2
作者 余海燕 WANG Yingxiang +2 位作者 WANG Ruizhi HU Lintong WANG Tianlei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期845-853,共9页
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co... Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength. 展开更多
关键词 corrosion inhibitors MICROCAPSULE double-layer structure potentiodynamic polarization curve
下载PDF
Effect of Plastic Deformation on Microstructure and Properties of Cu-(1 wt%-6 wt%) Ag Alloy
3
作者 茹亚东 ZHANG Zhongyuan +7 位作者 高召顺 ZHANG Ling ZUO Tingting XUE Jiangli TANG Zhixiang DA Bo LIU Yongsheng XIAO Liye 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期747-753,共7页
In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The re... In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The results show that non-equilibrium eutectic colonies exist in the Cu-(3 wt%-6 wt%)Ag alloy and no eutectic colonies in the 1 wt%-2 wt%Ag containing alloys.These eutectic colonies are aligned along the drawing direction and refined with the increase of draw ratio.Attributed to the refinement of eutectic colonies,the Cu-Ag alloy exhibits higher strength with the increase of draw ratio.The Cu-6Ag alloy exhibits excellent comprehensive properties with a strength of 930 MPa and a conductivity of 82%IACS when the draw ratio reaches 5.7. 展开更多
关键词 Cu-Ag alloy high strength and high conductivity microstructure eutectic structure strengthening mechanism
下载PDF
Research of the Conductive Structure of Crust and the Upper Mantle beneath the South-Central Tibetan Plateau 被引量:1
4
作者 叶高峰 金胜 +1 位作者 魏文博 Martyn Unsworth 《Journal of China University of Geosciences》 SCIE CSCD 2007年第4期334-343,共10页
With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) wh... With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004, we obtained the strike direction of each MT station by strike analysis, then traced profiles that were perpendicular to the main strike direction, and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models, we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 Ω.m. The depth of its bottom surface is about 15-20 km generally, but the bottom surface of resistive layer is deeper in the middle of these two profiles. At llne 900, it is about 30 km deep, and even at line 800, it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km, and a conductive layer is beneath it with resistivity even less than 5 Ω.m. This conductive layer is composed of individual conductive bodies, and at the south of the Yalung Tsangpo suture, the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However, at the north of the Yalung Tsangpo suture, the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively, the conductive bodies of line 900 are thinner than those of line 800, and the depth of the bottom surface of line 900 is also shallower. At last, after analyzing the effect factors to the resistivity of rocks, it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick, hot, flabby, and waxy. 展开更多
关键词 south-central Tibet magnetotelluric sounding nonlinear conjugate gradients inversion conductive structure partial melt.
下载PDF
THE DOUBLE-LAYER STRUCTURE OF THE HADLEY CIRCULATION AND ITS INTERDECADAL EVOLUTION CHARACTERISTICS 被引量:1
5
作者 CHENG Jian-bo HU Shu-juan CHOU Ji-fan 《Journal of Tropical Meteorology》 SCIE 2018年第2期220-231,共12页
Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by us... Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by using monthly horizontal wind field from NCEP/NCAR reanalysis data from 1948—2011. The following major conclusions are drawn: First, the double-layer structure of the HC is an objective fact, and it constantly exists in April,May, June, October and November in the Southern Hemisphere. Second, the double-layer structure is more obvious in the Southern than in the Northern Hemisphere. Since the double-layer structure is sloped in the vertical direction, it should be taken into consideration when analyzing the variations of the strength and location of the center of the HC.Third, the strength of the double-layer structure of the HC in the Southern Hemisphere consistently exhibits decadal variations with a strong, weak and strong pattern in all five months(April, May, June, October, and November), with cycles of 20-30 a and 40-60 a. Fourth, the center of the HC(mean position of the double-layer structure) in the Southern Hemisphere consistently and remarkably shifts southward in all the five months. The net poleward shifts over the 64 years are 5.18°, 2.11°, 2.50°, 1.79° and 5.76° for the five respective months, with a mean shift of 3.47°. 展开更多
关键词 three-pattern decomposition of global atmospheric circulation Hadley circulation double-layer structure decadal variations
下载PDF
Conductive Polymer Composites Fabricated by Disposable Face Masks and Multi-Walled Carbon Nanotubes: Crystalline Structure and Enhancement Effect
6
作者 Meng Xiang Zhou Yang +5 位作者 Jingjing Yang Tong Lu Danqi Wu Zhijun Liu Rongjie Xue Shuang Dong 《Journal of Renewable Materials》 SCIE EI 2022年第3期821-831,共11页
Influenced by recent COVID-19,wearing face masks to block the spread of the epidemic has become the simplest and most effective way.However,after the people wear masks,thousands of tons of medical waste by used dis-po... Influenced by recent COVID-19,wearing face masks to block the spread of the epidemic has become the simplest and most effective way.However,after the people wear masks,thousands of tons of medical waste by used dis-posable masks will be generated every day in the world,causing great pressure on the environment.Herein,con-ductive polymer composites are fabricated by simple melt blending of mask fragments(mask polypropylene,short for mPP)and multi-walled carbon nanotubes(MWNTs).MWNTs were used as modifiers for composites because of their high strength and high conductivity.The crystalline structure,mechanical,electrical and thermal enhancement effect of the composites were investigated.MWNTs with high thermal stability acted the role of promoting the crystallisation of mPP by expediting the crystalline nucleation,leading to the improvement of amount for crystalline nucleus.MWNTs fibers interpenetrate with each other in mPP matrix to form conducting network.With 2.0 wt% MWNTs loading,the tensile strength and electrical conductivity of the composites were increased by 809% and 7 orders of magnitude.MWNTs fibers interpenetrate with each other in mPP matrix to form conducting network.Thus,more conducting paths were constructed to transport carriers.The findings may open a way for high value utilization of the disposable masks. 展开更多
关键词 Disposable face masks multi-walled carbon nanotubes crystalline structure mechanical enhancement effect conducting network
下载PDF
Numerical Analysis of the Structure of High-Strength Double-Layer Steel Plate Concrete Shaft by Drilling Method of Water-Bearing Weak Rock Formation
7
作者 Touogam Touolak Benedicte 《Open Journal of Civil Engineering》 2022年第2期189-207,共19页
In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engin... In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engineers too confused to fully recognize its feasibility of this structure. Hence, based on the previous experimental research on the Taohutu mine construction project in  Ordos in Inner Mongolia, this research paper aims to provide a widely deep numerical analysis by the usage of the finite element software, in fact, to establish the corresponding numerical analysis model and make a comparison with the experimental data to get the rationality of the verified model. The influence of the composite characteristics of the steel plate and concrete on the ultimate bearing capacity and stress field of the shaft wall structure is studied here through the method of multi-factor analysis. Also, the optimal design scheme of the double-layer steel plate and concrete composite shaft wall structure is proposed in this research paper. 展开更多
关键词 Finite Element Method double-layer Steel Plate Shaft Wall structure Taohutu Mine Construction
下载PDF
Preparation and Microwave Absorbing Properties of Double-layer Fine Iron Tailings Cementitious Materials
8
作者 LI Huawei WANG Rong +3 位作者 WANG Yulin LIU Feiyu WANG Qian WEI Muwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1126-1135,共10页
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe... To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials. 展开更多
关键词 microwave absorbing properties iron tailings electromagnetic parameters single-layer structure double-layer structure impedance matching
下载PDF
Deterioration of equivalent thermal conductivity of granite subjected to heating-cooling treatment 被引量:1
9
作者 Mohua Bu Peng Zhang +3 位作者 Pingye Guo Jiamin Wang Zhaolong Luan Xin Jin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4229-4246,共18页
Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The... Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The transient hot-wire technique was used to determine the equivalent thermal conductivity(ETC)of the granite before and after treatment.The deterioration mechanism of ETC is analyzed from the meso-perspective.Finally,the numerical model is used to quantitatively study the impact of cooling rate on the microcrack propagation and heat conduction characteristics of granite.The results show that the ETC of granite is not only related to the heating temperature,but also affected by the cooling rate.The ETC of granite decreases nonlinearly with increasing heating temperature.A faster cooling rate causes a greater decrease in ETC at the same heating temperature.The higher the heating temperature,the stronger the influence of cooling rate on ETC.The main explanation for the decrease in ETC of granite is the increase in porosity and microcrack density produced by the formation and propagation of pore structure and microcracks during heating and cooling.Further analysis displays that the damage of granite at the heating stage is induced by the difference in thermal expansion and elastic properties of mineral particles.At the cooling stage,the faster cooling rate causes a higher temperature gradient,which in turn produces greater thermal stress.As a result,it not only causes new cracks in the granite,but also aggravates the damage at the heating stage,which induces a further decrease in the heat conduction performance of granite,and this scenario is more obvious at higher temperatures. 展开更多
关键词 Equivalent thermal conductivity(ETC) GRANITE Heating-cooling treatment Pore structure MICROCRACK Grain-based model
下载PDF
A micromechanical model for efective conductivity in granular electrode structures 被引量:2
10
作者 Julia Ott Benjamin Vlker +2 位作者 Yixiang Gan Robert M.Mc Meeking Marc Kamlah 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期682-698,共17页
Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB a... Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete el- ement approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the con- nectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, es- pecially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of cal- endering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase. 展开更多
关键词 Granular electrode structures Effective conductivity - Percolation
下载PDF
Study on Band Structure of YbB_6 and Analysis of Its Optical Conductivity Spectrum 被引量:1
11
作者 姜骏 卞江 黎乐民 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第6期654-664,共11页
The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation ... The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed. On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated. The results are in good agreement with the experiments. The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail. The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones. 展开更多
关键词 YbB6 band structure optical conductivity energy-loss function spectrum assignment rare earths
下载PDF
A Valence Electron Structure Criterion of Ionic Conductivity of Sr- and Mg-doped LaGaO_3 Ceramics 被引量:1
12
作者 Min SHI Ning LIU +3 位作者 Yudong XU Can WANG Yupeng YUAN P.Majewski 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期215-219,共5页
The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was ... The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was proposed, i.e. the 1/(nAnB) increases with increasing the ionic conductivity when x or y〈20% (in molar fraction). 展开更多
关键词 Empirical electron theory of solids and molecules (EET) Valence electron structure LaGaO3 ceramics Ionic conductivity
下载PDF
Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems 被引量:1
13
作者 PANG Xiao-Feng YU Jia-Feng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2期235-243,共9页
The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-fie... The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the "force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crvstal. This shows that our model is available and appropriate to ice. 展开更多
关键词 proton conductivity structure disorder temperature hydrogen bonded system
下载PDF
Theoretical Aspects on Doped-Zirconia for Solid Oxide Fuel Cells:from Structure to Conductivity 被引量:1
14
作者 Shu-hui Guan Zhi-pan Liu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第2期125-136,I0001,共13页
Solid oxide fuel cells(SOFCs)are regarded to be a key clean energy system to convert chemical energy(e.g.H_(2) and O_(2))into electrical energy with high efficiency,low carbon footprint,and fuel flexibility.The electr... Solid oxide fuel cells(SOFCs)are regarded to be a key clean energy system to convert chemical energy(e.g.H_(2) and O_(2))into electrical energy with high efficiency,low carbon footprint,and fuel flexibility.The electrolyte,typically doped zirconia,is the"state of the heart"of the fuel cell technologies,determining the performance and the operating temperature of the overall cells.Yttria stabilized zirconia(YSZ)have been widely used in SOFC due to its excellent oxide ion conductivity at high temperature.The composition and temperature dependence of the conductivity has been hotly studied in experiment and,more recently,by theoretical simulations.The characterization of the atomic structure for the mixed oxide system with different compositions is the key for elucidating the conductivity behavior,which,however,is of great challenge to both experiment and theory.This review presents recent theoretical progress on the structure and conductivity of YSZ electrolyte.We compare different theoretical methods and their results,outlining the merits and deficiencies of the methods.We highlight the recent results achieved by using stochastic surface walking global optimization with global neural network potential(SSW-NN)method,which appear to agree with available experimental data.The advent of machine-learning atomic simulation provides an affordable,efficient and accurate way to understand the complex material phenomena as encountered in solid electrolyte.The future research directions for design better electrolytes are also discussed. 展开更多
关键词 Solid oxide fuel cells Yttria stabilized zirconia conductIVITY Atomistic structure Theoretical aspects
下载PDF
The Electrical Conductivity Structure of the Lanping–Simao Basin and its Implications for Mineralization 被引量:1
15
作者 LI Yike WANG Anjian +1 位作者 CAO Dianhua GUAN Ye 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第3期1055-1056,共2页
Objective The Lanping-Simao Basin in western Yunnan, located in the southeastern margin of the Tibetan Plateau, is tectonically in the transition zone between the Gondwana and Eurasia tectonic domains. It is also the ... Objective The Lanping-Simao Basin in western Yunnan, located in the southeastern margin of the Tibetan Plateau, is tectonically in the transition zone between the Gondwana and Eurasia tectonic domains. It is also the frontier zone of northeastern extrusion of the Indochina Plate towards the Eurasia Plate as well as the escape zone for the deep material. The middle axial tectonic zone, also known as the Lanping-Simao Fault (LSF) in previous study, is a giant intraplate tectonic belt composed of a series of narrow uplift belt, rupture depression zone, metamorphic belt, alteration belt and marginal fracture system, which were formed by the compressional uplift of the central depression of the Lanping-Simao Basin. This tectonic unit controls the geological evolution, seismic activity, hot spring distribution and ore formation of the LanpingSimao Basin since the Mesozoic and Cenozoic. 展开更多
关键词 Simao Basin and its Implications for Mineralization The Electrical conductivity structure of the Lanping LSF
下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
16
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
Efficient placement technology of proppants based on structural stabilizers
17
作者 GUO Jianchun REN Shan +3 位作者 ZHANG Shaobin DIAO Su LU Yang ZHANG Tao 《Petroleum Exploration and Development》 SCIE 2024年第3期706-714,共9页
Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is de... Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells. 展开更多
关键词 hydraulic fracturing PROPPANT structure stabilizer placement mechanism conductIVITY proppant backflow rate
下载PDF
Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
18
作者 郑坤灿 李震东 +2 位作者 曹豫通 刘犇 胡君磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期28-36,共9页
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma... Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae. 展开更多
关键词 silica aerogel effective thermal conductivity two pore-size structure model porous medium heat transfer
下载PDF
The Inorganic-free Organic Conductor α'-(ET)_2C_6H_4(SO_3)_2 : Its Synthesis, Structure, and Conductivity
19
作者 ZhiLIU DaoBenZHU 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第8期725-728,共4页
A new ET based cation radical salt, a-(ET)2C6H4(SO3)2 (ET = bis(ethylenedithio) tetrathiafulvalene) has been synthesized by oxidative electro-crystallization and the crystal structure determined to be in monoclinic sy... A new ET based cation radical salt, a-(ET)2C6H4(SO3)2 (ET = bis(ethylenedithio) tetrathiafulvalene) has been synthesized by oxidative electro-crystallization and the crystal structure determined to be in monoclinic system, P2/n space group. Its resistivity-temperature curve shows a semi-conductive behavior with a discontinuation at about 150K. 展开更多
关键词 ET SYNTHESIS structure conductivity.
下载PDF
Synthesis,Structure and Conductivity of(PyH)[Ni(dmit)2]2
20
作者 WenXU QiFANG +7 位作者 GangXUE WenTaoYU HongYuCHEN GuoOunLIU WeiXU CuiYingXU DeQingZHANG DaoBenZHU 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第10期1089-1092,共4页
A new molecular conductor (PyH)[Ni(dmit)2]2 (dmit = 4, 5-dimercapto-1, 3-dithiole-2-thione) has been prepared and its crystal structure has been determined. Crystallographic parameters for (PyH)[Ni(dmit)2]2: C17H6NNi2... A new molecular conductor (PyH)[Ni(dmit)2]2 (dmit = 4, 5-dimercapto-1, 3-dithiole-2-thione) has been prepared and its crystal structure has been determined. Crystallographic parameters for (PyH)[Ni(dmit)2]2: C17H6NNi2S20; triclinic system; P-1 space group; a = 5.9227 (4) , b =8.2279 (6), c = 16.7535 (9) A, a = 90.233 (5) , 0 = 92.107 (6) , y= 104.654 (6) ; V= 789.25 (9) A3; Z = 1; Dc = 2.068 g/cm3; F (000) = 491. The conductivity at one direction on (001) plane at room temperature was measured to be 0.13 ii^-cmf1. The resistivity-temperature curve in the temperature range of 90-290 K shows that this compound behaves as a semiconductor. 展开更多
关键词 Molecular conductor SYNTHESIS electrical conductivity SEMIconductOR structure.
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部