We study the fabric spreading and cutting problem in apparel factories.For the sake of saving the material costs,the cutting requirement should be met exactly without producing additional garment components.For reduci...We study the fabric spreading and cutting problem in apparel factories.For the sake of saving the material costs,the cutting requirement should be met exactly without producing additional garment components.For reducing the production costs,the number of lays that corresponds to the frequency of using the cutting beds should be minimized.We propose an iterated greedy algorithm for solving the fabric spreading and cutting problem.This algorithm contains a constructive procedure and an improving loop.Firstly the constructive procedure creates a set of lays in sequence,and then the improving loop tries to pick each lay from the lay set and rearrange the remaining lays into a smaller lay set.The improving loop will run until it cannot obtain any smaller lay set or the time limit is due.The experiment results on 500 cases show that the proposed algorithm is effective and efficient.展开更多
In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the...In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.展开更多
An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SG...An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SGA is a serious problem in practical application. Accelerating genetic algorithm (AGA) based on integer coding and AGA's detailed steps are developed to reduce the amount of computation, and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem. SGA is adopted to produce individuals within given evolution process, and the variation interval of these individuals is taken as initial domain of the next optimization process, thus shrinks searching range intensively and accelerates the evaluation process of SGA. To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result, fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process. According to the computational experiment, it is observed that this improved GA converges much sooner than SGA, and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem.展开更多
Balas and Mazzola linearization (BML) is widely used in devising cutting plane algorithms for quadratic 0-1 programs. In this article, we improve BML by first strengthening the primal formulation of BML and then consi...Balas and Mazzola linearization (BML) is widely used in devising cutting plane algorithms for quadratic 0-1 programs. In this article, we improve BML by first strengthening the primal formulation of BML and then considering the dual formulation. Additionally, a new cutting plane algorithm is proposed.展开更多
In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the ...In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.展开更多
In order to realize the memory cutting of a shearer, made use of the memorizedcutting path and acquisitioned cutting parameters, and realized the teaching and playbackof the cutting path.In order to optimize the memor...In order to realize the memory cutting of a shearer, made use of the memorizedcutting path and acquisitioned cutting parameters, and realized the teaching and playbackof the cutting path.In order to optimize the memory cutting path of a shearer, took intoaccount the constraints of coal mining craft, coal quality and the adaption faculty of coalmining equipments.Genetic algorithm theory was used to optimize the memory cutting ofshearer and simulate with Matlab, and realized the most valuable mining recovery rate.The experimental results show that the optimization of the memory cutting path of ashearer based on the genetic algorithm is feasible and obtains the most valuable memorycutting path, improving the ability of shearer automatic cutting.展开更多
We consider the problem of guillotine cutting a rectangular sheet into rectangular pieces with two heights. A polynomial time algorithm for this problem is constructed.
To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most importa...To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most important building materials in construction engineering,reinforcing bars(rebar)account for more than 30%of the cost in civil engineering.A significant amount of cutting waste is generated during the construction phase.Excessive cutting waste increases construction costs and generates a considerable amount of CO_(2)emission.This study aimed to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel bar engineering to realize sustainable construction.In the proposed algorithm,the integer linear programming algorithm was applied to solve the problem.It was combined with the statistical method,a greedy strategy was introduced,and a method for determining the dynamic critical threshold was developed to ensure the accuracy of large-scale data calculation.The proposed algorithm was verified through a case study;the results confirmed that the rebar loss rate of the proposed method was reduced by 9.124%compared with that of traditional distributed processing of steel bars,reducing CO_(2)emissions and saving construction costs.As the scale of a project increases,the calculation quality of the optimization algorithmfor steel bar blanking proposed also increases,while maintaining high calculation efficiency.When the results of this study are applied in practice,they can be used as a sustainable foundation for building informatization and intelligent development.展开更多
This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids(DLGs),as used in the construction industry.A total of 12 notable meta...This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids(DLGs),as used in the construction industry.A total of 12 notable metaheuristics are assessed and contrasted,and as a result,the Slime Mold Algorithm is identified as the most effective approach for size optimization of DLGs.To evaluate the influence of geometric imperfections and nonlinearity on the optimal design of real-size DLGs,the optimization process is carried out by considering and disregarding geometric nonlinearity while incorporating three distinct forms of geometrical imperfections,namely local imperfections,global imperfections,and combinations of both.In light of the uncertain nature of geometrical imperfections,probabilistic distributions are used to define these imperfections randomly in direction and magnitude.The results demonstrate that it is necessary to account for these imperfections to obtain an optimal solution.It’s worth noting that structural imperfections can increase the maximum stress ratio by up to 70%.The analysis also reveals that the initial curvature of members has a more significant impact on the optimal design of structures than the nodal installation error,indicating the need for greater attention to local imperfection issues in space structure construction.展开更多
基金supported in part by the National Key Research and Development Program of China(2018YFB1702701)the National Natural Science Foundation of China(61773381,61773382,61533019,61702519)+3 种基金Dongguan’s Innovation Talents Project(Gang Xiong)Guangdong’s Science and Technology Project(2017B090912001)Beijing Natural Science Foundation(4182065)Chinese Hunan’s Science and Technology Project(20181040)
文摘We study the fabric spreading and cutting problem in apparel factories.For the sake of saving the material costs,the cutting requirement should be met exactly without producing additional garment components.For reducing the production costs,the number of lays that corresponds to the frequency of using the cutting beds should be minimized.We propose an iterated greedy algorithm for solving the fabric spreading and cutting problem.This algorithm contains a constructive procedure and an improving loop.Firstly the constructive procedure creates a set of lays in sequence,and then the improving loop tries to pick each lay from the lay set and rearrange the remaining lays into a smaller lay set.The improving loop will run until it cannot obtain any smaller lay set or the time limit is due.The experiment results on 500 cases show that the proposed algorithm is effective and efficient.
基金the Natural Science Fundation of China for the Innovative Research Group of China Under Grant No. 50621062
文摘In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.
基金This project is supported by National Natural Science Foundation of China (No.50575153)Provincial Key Technology Projects of Sichuan, China (No.03GG010-002)
文摘An improved genetic algorithm and its application to resolve cutting stock problem arc presented. It is common to apply simple genetic algorithm (SGA) to cutting stock problem, but the huge amount of computing of SGA is a serious problem in practical application. Accelerating genetic algorithm (AGA) based on integer coding and AGA's detailed steps are developed to reduce the amount of computation, and a new kind of rectangular parts blank layout algorithm is designed for rectangular cutting stock problem. SGA is adopted to produce individuals within given evolution process, and the variation interval of these individuals is taken as initial domain of the next optimization process, thus shrinks searching range intensively and accelerates the evaluation process of SGA. To enhance the diversity of population and to avoid the algorithm stagnates at local optimization result, fixed number of individuals are produced randomly and replace the same number of parents in every evaluation process. According to the computational experiment, it is observed that this improved GA converges much sooner than SGA, and is able to get the balance of good result and high efficiency in the process of optimization for rectangular cutting stock problem.
文摘Balas and Mazzola linearization (BML) is widely used in devising cutting plane algorithms for quadratic 0-1 programs. In this article, we improve BML by first strengthening the primal formulation of BML and then considering the dual formulation. Additionally, a new cutting plane algorithm is proposed.
基金Ministry of Science and Technology of China Under Grant No.SLDRCE09-B-12Natural Science Funds for Young Scholars of China Under Grant No.50808144
文摘In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.
基金Supported by the High-Tech Research and Development Program of China(2008AA062202)Fok Ying Tung Education Foundation(114003)New Teacher Foundation for the Doctoral Program of Ministry of Education(20070290538)
文摘In order to realize the memory cutting of a shearer, made use of the memorizedcutting path and acquisitioned cutting parameters, and realized the teaching and playbackof the cutting path.In order to optimize the memory cutting path of a shearer, took intoaccount the constraints of coal mining craft, coal quality and the adaption faculty of coalmining equipments.Genetic algorithm theory was used to optimize the memory cutting ofshearer and simulate with Matlab, and realized the most valuable mining recovery rate.The experimental results show that the optimization of the memory cutting path of ashearer based on the genetic algorithm is feasible and obtains the most valuable memorycutting path, improving the ability of shearer automatic cutting.
文摘We consider the problem of guillotine cutting a rectangular sheet into rectangular pieces with two heights. A polynomial time algorithm for this problem is constructed.
基金funded by Nature Science Foundation of China(51878556)the Key Scientific Research Projects of Shaanxi Provincial Department of Education(20JY049)+1 种基金Key Research and Development Program of Shaanxi Province(2019TD-014)State Key Laboratory of Rail Transit Engineering Informatization(FSDI)(SKLKZ21-03).
文摘To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most important building materials in construction engineering,reinforcing bars(rebar)account for more than 30%of the cost in civil engineering.A significant amount of cutting waste is generated during the construction phase.Excessive cutting waste increases construction costs and generates a considerable amount of CO_(2)emission.This study aimed to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel bar engineering to realize sustainable construction.In the proposed algorithm,the integer linear programming algorithm was applied to solve the problem.It was combined with the statistical method,a greedy strategy was introduced,and a method for determining the dynamic critical threshold was developed to ensure the accuracy of large-scale data calculation.The proposed algorithm was verified through a case study;the results confirmed that the rebar loss rate of the proposed method was reduced by 9.124%compared with that of traditional distributed processing of steel bars,reducing CO_(2)emissions and saving construction costs.As the scale of a project increases,the calculation quality of the optimization algorithmfor steel bar blanking proposed also increases,while maintaining high calculation efficiency.When the results of this study are applied in practice,they can be used as a sustainable foundation for building informatization and intelligent development.
文摘This study focuses on exploring the effects of geometrical imperfections and different analysis methods on the optimum design of Double-Layer Grids(DLGs),as used in the construction industry.A total of 12 notable metaheuristics are assessed and contrasted,and as a result,the Slime Mold Algorithm is identified as the most effective approach for size optimization of DLGs.To evaluate the influence of geometric imperfections and nonlinearity on the optimal design of real-size DLGs,the optimization process is carried out by considering and disregarding geometric nonlinearity while incorporating three distinct forms of geometrical imperfections,namely local imperfections,global imperfections,and combinations of both.In light of the uncertain nature of geometrical imperfections,probabilistic distributions are used to define these imperfections randomly in direction and magnitude.The results demonstrate that it is necessary to account for these imperfections to obtain an optimal solution.It’s worth noting that structural imperfections can increase the maximum stress ratio by up to 70%.The analysis also reveals that the initial curvature of members has a more significant impact on the optimal design of structures than the nodal installation error,indicating the need for greater attention to local imperfection issues in space structure construction.