Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyet...Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyethylene terephthalate/reduced graphene oxide/SWCNT(PET/rGO/SWCNT)electromagnetic shielding composite fabric was successfully prepared by anchoring rGO/SWCNT on PET fabric via dip-coating piror to low-temperature thermal reduction.The results showed that the carboxyl groups and hydroxyl groups formed of hydrophilic-treated PET were conducive to the formation of hydrogen bonds with that of GO,which enhanced the interaction between PET fabric and GO/SWCNT coating;the loading of GO/SWCNT increased with the number of dip-coating,the unit area loading of rGO/SWCNT in the final composite fabric was 2.7 mg/cm^(2) after 10 dip-coating cycles and thermal reduction;the PET/rGO/SWCNT composite fabric had a continuous and dense conductive network,with a conductivity of up to 41.6 S/m and the average electromagnetic interference shielding effectiveness in X-band was 22 dB;the flexible PET/rGO/SWCNT composite fabric was not only easy to process,but also exhibited excellent conductivity and shielding efficiency,showing great potential in the application of electromagnetic shielding fabrics.展开更多
The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on...The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on special instrument made by ourselves. The results of test show that the fabric with different inlaid distances of metal fibres and the testing angle between electric field plane and parallel metal fibres of have obvious effect on the shielding effectiveness of electromagnetic wave.展开更多
Wireless communication technology is indispensable in our daily lives,but it also results in serious electromagnetic radiation pollution.Hence,developing smart electromagnetic interference shielding materials with adj...Wireless communication technology is indispensable in our daily lives,but it also results in serious electromagnetic radiation pollution.Hence,developing smart electromagnetic interference shielding materials with adjustable electromagnetic wave(EMW)responses holds significant promise for future electromagnetic shielding devices.In this study,we propose an electromagnetic shielding switch(ESS)characterized by tunable electromagnetic shielding performance achieved by fabricating a three-dimensional(3D)carbon nanotube-based spacer fabric(CNT-SF)and modifying CNT-SF with chemical vapor deposition(CCNT-SF).The CCNT-SF displays direction-dependent electrical conductivity by manipulating the warp and weft density,measuring 128 S/m transversely and 447 S/m vertically.This characteristic allows the CCNT-SF to transmit or shield EMW by adjusting the angle of EMW incidence through fabric rotation,resulting in anisotropic electromagnetic shielding performance(33 dB transversely and 87 dB vertically).This feature enables switchable shielding with an on/off ratio of 2.64.Furthermore,the unique 3D structure confers excellent mechanical properties on the fabric,with compressive strength reaching 120 kPa.As a flexible,lightweight,and mechanically robust ESS,the CCNT-SF holds promising prospects for mitigating the challenges of increasingly severe and intricate electromagnetic environments.展开更多
Wearable electromagnetic interference(EMI)shielding fabrics with excellent electromagnetic shielding performance,oxidation resistance,and structural stability are highly demanded for the rapid development of electroni...Wearable electromagnetic interference(EMI)shielding fabrics with excellent electromagnetic shielding performance,oxidation resistance,and structural stability are highly demanded for the rapid development of electronic devices and wireless communication.MXenes are metallic conductive materials with exceptional EMI shielding properties,but they are prone to oxidation in air and have poor structural stability and durability on fabric substrates.Herein,we present a one-step assembly method to fabricate fabrics coated with MXenes and polymeric sodium alginate(SA)composite(MXene-SA).SA protects MXenes from oxidation and forms a stable interlayer structure by bonding to MXenes.The MXene-SA coated fabrics are breathable and flexible,and have a low sheet resistance of 2.12±0.08Ω/sq and a high EMI shielding performance of 37.05 dB at X-band,which is comparable to the best 42.31 dB.Moreover,the MXene-SA coated fabrics exhibit high structural stability and oxidation resistance under various conditions of sonication disintegration,mechanical abuse,chemical corrosion,and humidity,compared to pure MXenes coated fabrics.We believe that the wearable and high-performance MXene-SA fabrics have great potential for the next generation of ultra-portable and wearable EMI shielding products.展开更多
Through the silver fiber and cotton mixed silver fiber shielding fabric,not only soft and comfortable,it can wear personal,but also has excellent anti electromagnetic shielding effect. Fabric in dyeing and finishing p...Through the silver fiber and cotton mixed silver fiber shielding fabric,not only soft and comfortable,it can wear personal,but also has excellent anti electromagnetic shielding effect. Fabric in dyeing and finishing process,may cause some damage on the silver fiber,influence the shielding performance of shielding fabric. Therefore,in this paper,through the experimental and analysis,find dyeing and finishing process may affect silver fiber shielding fabric and the reasons.展开更多
Multifunctional intelligent fire-safe cotton fabric promises next-generation fire-fighting uniform and sen-sor applications.However,cotton fabrics’hygroscopicity and intrinsic flammability significantly impede their ...Multifunctional intelligent fire-safe cotton fabric promises next-generation fire-fighting uniform and sen-sor applications.However,cotton fabrics’hygroscopicity and intrinsic flammability significantly impede their potential applications in industries.Herein,we report a superhydrophobic fireproof cotton fabric(PEI-APP-PEI-MXene)generated via sequential layer-by-layer deposition of polyethyleneimine(PEI),am-monium polyphosphate(APP),and titanium carbide(MXene),followed by hydrophobic treatment with silicone elastomer.Compared to untreated cotton,the treated cotton fabric with 10 polymolecular layers exhibits∼43%and∼42%reductions in the peak heat release rate and total heat release,respectively,a desired UL-94 V-0 rating,and a high limiting oxygen index(LOI)value of 39.5 vol.%.In addition to that,the treated fabrics displayed improved electromagnetic interference(EMI)shielding and motion-sensing abilities.The presented work provides a facile and effective surface modification approach to generate multifunctional cotton fabrics with promising practical applications.展开更多
Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a ne...Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a newly developed MXene/polyaniline(PANI)multifunctional fabric integrated with strain sensing,electrochemical energy storage,and electromagnetic shielding properties.The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100%with a minute strain of 0.5%,maintaining a stable and consistent signal response even after 3000 stretch–release cycles.In addition,the multifunctional fabric exhibits excellent electromagnetic shielding capabilities,achieving a total shielding effectiveness value of up to 43 dB,and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor,offering a maximum specific capacity and energy density of 522.5 mF·cm^(−2)and 18.16μWh·cm^(−2),respectively.Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.展开更多
The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electroma...The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electromagnetic interference(EMI)shielding performance.This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber(ANF)and Ti3C2Tx MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)layers.The ANF layer serves to provide good mechanical stability,whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity.Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer.The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4μm was shown to display low sheet resistance(2.18Ω/sq),good EMI shielding effectiveness(EMI SE of 48.1 dB),high mechanical strength(155.9 MPa),and overall toughness(19.4 MJ/m^(3)).Moreover,the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions,producing excellent Joule heating(382℃ at 4 V)and photothermal conversion(59.6℃ at 100 mW/m^(2))properties.展开更多
Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and cha...Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.展开更多
文摘Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyethylene terephthalate/reduced graphene oxide/SWCNT(PET/rGO/SWCNT)electromagnetic shielding composite fabric was successfully prepared by anchoring rGO/SWCNT on PET fabric via dip-coating piror to low-temperature thermal reduction.The results showed that the carboxyl groups and hydroxyl groups formed of hydrophilic-treated PET were conducive to the formation of hydrogen bonds with that of GO,which enhanced the interaction between PET fabric and GO/SWCNT coating;the loading of GO/SWCNT increased with the number of dip-coating,the unit area loading of rGO/SWCNT in the final composite fabric was 2.7 mg/cm^(2) after 10 dip-coating cycles and thermal reduction;the PET/rGO/SWCNT composite fabric had a continuous and dense conductive network,with a conductivity of up to 41.6 S/m and the average electromagnetic interference shielding effectiveness in X-band was 22 dB;the flexible PET/rGO/SWCNT composite fabric was not only easy to process,but also exhibited excellent conductivity and shielding efficiency,showing great potential in the application of electromagnetic shielding fabrics.
基金This study is supported by Shaanxi Provincial Laboratory of Functional Textiles and Academy Laboratory of Xi’an University of Engineer-ing Science and Technology in Xi’an city ,P.R.Chian
文摘The electremagnetic radicalization has become more serious. The shielding effectiveness of polyester fabrics with different inlaid distance of parallel metal fibres to electromagnetic wave was studied in this paper on special instrument made by ourselves. The results of test show that the fabric with different inlaid distances of metal fibres and the testing angle between electric field plane and parallel metal fibres of have obvious effect on the shielding effectiveness of electromagnetic wave.
基金funded by the Youth Innovation Promotion Association,CAS(D.M.H.)and the Suzhou Municipal Science and Technology Bureau(No.SJC2021008).
文摘Wireless communication technology is indispensable in our daily lives,but it also results in serious electromagnetic radiation pollution.Hence,developing smart electromagnetic interference shielding materials with adjustable electromagnetic wave(EMW)responses holds significant promise for future electromagnetic shielding devices.In this study,we propose an electromagnetic shielding switch(ESS)characterized by tunable electromagnetic shielding performance achieved by fabricating a three-dimensional(3D)carbon nanotube-based spacer fabric(CNT-SF)and modifying CNT-SF with chemical vapor deposition(CCNT-SF).The CCNT-SF displays direction-dependent electrical conductivity by manipulating the warp and weft density,measuring 128 S/m transversely and 447 S/m vertically.This characteristic allows the CCNT-SF to transmit or shield EMW by adjusting the angle of EMW incidence through fabric rotation,resulting in anisotropic electromagnetic shielding performance(33 dB transversely and 87 dB vertically).This feature enables switchable shielding with an on/off ratio of 2.64.Furthermore,the unique 3D structure confers excellent mechanical properties on the fabric,with compressive strength reaching 120 kPa.As a flexible,lightweight,and mechanically robust ESS,the CCNT-SF holds promising prospects for mitigating the challenges of increasingly severe and intricate electromagnetic environments.
基金the National Natural Science Foundation of China(No.52173236)the Sichuan Science and Technology Program(No.2023NSFSC0410).
文摘Wearable electromagnetic interference(EMI)shielding fabrics with excellent electromagnetic shielding performance,oxidation resistance,and structural stability are highly demanded for the rapid development of electronic devices and wireless communication.MXenes are metallic conductive materials with exceptional EMI shielding properties,but they are prone to oxidation in air and have poor structural stability and durability on fabric substrates.Herein,we present a one-step assembly method to fabricate fabrics coated with MXenes and polymeric sodium alginate(SA)composite(MXene-SA).SA protects MXenes from oxidation and forms a stable interlayer structure by bonding to MXenes.The MXene-SA coated fabrics are breathable and flexible,and have a low sheet resistance of 2.12±0.08Ω/sq and a high EMI shielding performance of 37.05 dB at X-band,which is comparable to the best 42.31 dB.Moreover,the MXene-SA coated fabrics exhibit high structural stability and oxidation resistance under various conditions of sonication disintegration,mechanical abuse,chemical corrosion,and humidity,compared to pure MXenes coated fabrics.We believe that the wearable and high-performance MXene-SA fabrics have great potential for the next generation of ultra-portable and wearable EMI shielding products.
文摘Through the silver fiber and cotton mixed silver fiber shielding fabric,not only soft and comfortable,it can wear personal,but also has excellent anti electromagnetic shielding effect. Fabric in dyeing and finishing process,may cause some damage on the silver fiber,influence the shielding performance of shielding fabric. Therefore,in this paper,through the experimental and analysis,find dyeing and finishing process may affect silver fiber shielding fabric and the reasons.
基金supported by the Australian Research Council(Nos.DP190102992,FT190100188)the National Natural Science Foundation of China(No.51873196)the Key Research and Development Projects of Zhejiang Province(No.2019C01098).
文摘Multifunctional intelligent fire-safe cotton fabric promises next-generation fire-fighting uniform and sen-sor applications.However,cotton fabrics’hygroscopicity and intrinsic flammability significantly impede their potential applications in industries.Herein,we report a superhydrophobic fireproof cotton fabric(PEI-APP-PEI-MXene)generated via sequential layer-by-layer deposition of polyethyleneimine(PEI),am-monium polyphosphate(APP),and titanium carbide(MXene),followed by hydrophobic treatment with silicone elastomer.Compared to untreated cotton,the treated cotton fabric with 10 polymolecular layers exhibits∼43%and∼42%reductions in the peak heat release rate and total heat release,respectively,a desired UL-94 V-0 rating,and a high limiting oxygen index(LOI)value of 39.5 vol.%.In addition to that,the treated fabrics displayed improved electromagnetic interference(EMI)shielding and motion-sensing abilities.The presented work provides a facile and effective surface modification approach to generate multifunctional cotton fabrics with promising practical applications.
基金support from the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program(No.TC220H06N)and the National Natural Science Foundation of China(Nos.U20A20131 and 22209193).
文摘Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a newly developed MXene/polyaniline(PANI)multifunctional fabric integrated with strain sensing,electrochemical energy storage,and electromagnetic shielding properties.The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100%with a minute strain of 0.5%,maintaining a stable and consistent signal response even after 3000 stretch–release cycles.In addition,the multifunctional fabric exhibits excellent electromagnetic shielding capabilities,achieving a total shielding effectiveness value of up to 43 dB,and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor,offering a maximum specific capacity and energy density of 522.5 mF·cm^(−2)and 18.16μWh·cm^(−2),respectively.Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.
基金support for this work by the National Key Research and Development Program of China(No.2019YFA0706802)the National Natural Science Foundation of China(Nos.51903223 and 12072325)the National Natural Science Foundation of China of Henan Province(No.222300420541).
文摘The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electromagnetic interference(EMI)shielding performance.This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber(ANF)and Ti3C2Tx MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)layers.The ANF layer serves to provide good mechanical stability,whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity.Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer.The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4μm was shown to display low sheet resistance(2.18Ω/sq),good EMI shielding effectiveness(EMI SE of 48.1 dB),high mechanical strength(155.9 MPa),and overall toughness(19.4 MJ/m^(3)).Moreover,the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions,producing excellent Joule heating(382℃ at 4 V)and photothermal conversion(59.6℃ at 100 mW/m^(2))properties.
基金financial supports from Natural Science Foundation of Ningbo(202003N4026)S&T Innovation 2025 Major Special Programme of Ningbo(2018B10054)National Natural Science Foundation of China(62001065 and 51603218)。
文摘Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.