A method for hardness measurement and evaluation of double-layer thin films on the material surface is proposed. Firstly, it is studied how to obtain the force-indentation response with the finite element method when...A method for hardness measurement and evaluation of double-layer thin films on the material surface is proposed. Firstly, it is studied how to obtain the force-indentation response with the finite element method when the indentation is less than 100 nanometers, in which current nanoindentation experiments have no reliable accuracy. The whole hardness-displacement curve and fitted equation are obtained. At last, a formula to predict the hardness of the thin film on the material surface is derived and favorably compared with experiments.展开更多
Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick ha...Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick hard rock strata were established based on the thick plate theory and numerical simulations.The results demonstrated that,based on the fracture characteristics of the thick hard rock strata,four fracture models could be analyzed in detail,and the corresponding theoretical failure criteria were determined in detail.In addition,the influence of weak interlayer position on the fracture models and ground pressure of rock strata is deeply analyzed,and six numerical simulation schemes have been implemented.The results showed that the working face pressure caused by the independent movement of the lower layer is relatively low.The different fracture type of the thick hard rock strata had different demands on the working resistance of the hydraulic powered supports.The working resistance of the hydraulic powered supports required by the stratified movements was lower than that of the non-stratified movements.展开更多
Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and anal...Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and analyze the mechanisms responsible for their occurrence.Based on the deep parallel tunnels with the maximum depth of 1890 m created as part of the Neelum–Jhelum hydropower project in Pakistan,similarities and differences on excavation-induced microseismicity and rockburst occurrence between parallel tunnels with soft and hard alternant strata are studied.Results show that a large number of microseismic(MS)events occurred in each of the parallel tunnels during excavation.Rockbursts occurred most frequently in certain local sections of the two tunnels.Significant differences are found in the excavation-induced microseismicity(spatial distribution and number of MS events,distribution of MS energy,and pattern of microseismicity variation)and rockbursts characteristics(the number and the spatial distribution)between the parallel tunnels.Attempting to predict the microseismicity and rockburst intensities likely to be encountered in subsequent tunnel based on the activity encountered when the parallel tunnel was previously excavated will not be an easy or accurate procedure in deep tunnel projects involving complex lithological conditions.展开更多
基金Chinese Academy of Sciences Foundation (KGCX1-11) N ational Natural Science Foundation of China (10 2 3 2 0 5 0 ) Min-istry of Science and Technology Foundation (2 0 0 2 CB412 70 6)
文摘A method for hardness measurement and evaluation of double-layer thin films on the material surface is proposed. Firstly, it is studied how to obtain the force-indentation response with the finite element method when the indentation is less than 100 nanometers, in which current nanoindentation experiments have no reliable accuracy. The whole hardness-displacement curve and fitted equation are obtained. At last, a formula to predict the hardness of the thin film on the material surface is derived and favorably compared with experiments.
基金the Beijing Outstanding Young Scientist Program of China(No.BJJWZYJH01201911413037)projects(Nos.41877257 and 51622404)supported by National Natural Science Foundation of China+1 种基金Shaanxi Coal Group Key Project of China(No.2018SMHKJ-A-J-03)the Fundamental Research Funds for the Central Universities of China(No.2021YJSLJ23)。
文摘Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick hard rock strata were established based on the thick plate theory and numerical simulations.The results demonstrated that,based on the fracture characteristics of the thick hard rock strata,four fracture models could be analyzed in detail,and the corresponding theoretical failure criteria were determined in detail.In addition,the influence of weak interlayer position on the fracture models and ground pressure of rock strata is deeply analyzed,and six numerical simulation schemes have been implemented.The results showed that the working face pressure caused by the independent movement of the lower layer is relatively low.The different fracture type of the thick hard rock strata had different demands on the working resistance of the hydraulic powered supports.The working resistance of the hydraulic powered supports required by the stratified movements was lower than that of the non-stratified movements.
基金Projects(41972295,U1965205)supported by the National Natural Science Foundation of ChinaProject(2019ZDK034)supported by the Guangxi Key Laboratory of Disaster Prevention and Engineering Safety,China。
文摘Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and analyze the mechanisms responsible for their occurrence.Based on the deep parallel tunnels with the maximum depth of 1890 m created as part of the Neelum–Jhelum hydropower project in Pakistan,similarities and differences on excavation-induced microseismicity and rockburst occurrence between parallel tunnels with soft and hard alternant strata are studied.Results show that a large number of microseismic(MS)events occurred in each of the parallel tunnels during excavation.Rockbursts occurred most frequently in certain local sections of the two tunnels.Significant differences are found in the excavation-induced microseismicity(spatial distribution and number of MS events,distribution of MS energy,and pattern of microseismicity variation)and rockbursts characteristics(the number and the spatial distribution)between the parallel tunnels.Attempting to predict the microseismicity and rockburst intensities likely to be encountered in subsequent tunnel based on the activity encountered when the parallel tunnel was previously excavated will not be an easy or accurate procedure in deep tunnel projects involving complex lithological conditions.