An experimental study was carried out to understand the phenomena of the boiling flow of liquid nitrogen in an inclined tube with closed bottom by using a high speed motion analyzer. The experimental tube is 0.018 m I...An experimental study was carried out to understand the phenomena of the boiling flow of liquid nitrogen in an inclined tube with closed bottom by using a high speed motion analyzer. The experimental tube is 0.018 m ID and 1.0m in length. The range of the inclination angle is 45°-9° from the horizontal. The experiment focused on the effect of the inclination angle show that the mean liquid slug length and Taylor bubble length increase with the increasing xlD at various inclination angles. At the same x/D, the mean liquid slug length and Taylor bubble length increase first, and then decrease with decreasing inclination angles, with the maximum at 60°. In the vertical tube, standard deviation of the nitrogen Taylor bubble iength increase with the increasing xlD. For the inclined tube, standard deviation of the nitrogen Taylor bubble length increases first, and then decreases with the increasing x/D. Standard deviation of the liquid slug length increases with increasing x/D for all inclination angles.展开更多
Based on analysis of the main forming methods for double-layer tube,a new short-term forming process called thixo-co-extrusion was put forward in producing double-layer tube by combining the semi-solid forming technol...Based on analysis of the main forming methods for double-layer tube,a new short-term forming process called thixo-co-extrusion was put forward in producing double-layer tube by combining the semi-solid forming technology and multi-billet extrusion technology.By means of forward extrusion with shaft,a finite element model of thixo-co-extrusion with A356/AZ91 was constructed by ABAQUS FEM software.The distributions of temperature field and velocity field as well as the contact force during thixo-co-extrusion were studied.The diffusion on the interfaces between inner and outer metals was analyzed.The simulation results show that,in the beginning of thixo-co-extrusion,the uneven wall thickness can appear.To thickness ratio of 5:5,a double layer tube with good inner and outer wall combination can be realized if VA356 is 0.12 m/s and VAZ91 is 0.20 m/s.展开更多
An experimental study was carried out to understand the phenomena of the boiling flow of liquid nitrogen in inclined tubes with closed bottom by using the high speed digital camera.The tubes in the experiment are 0.01...An experimental study was carried out to understand the phenomena of the boiling flow of liquid nitrogen in inclined tubes with closed bottom by using the high speed digital camera.The tubes in the experiment are 0.018 m and 0.014 m in inner diameter and 1.0 m in length.The range of the inclination angles is 0-45° from the vertical.The statistical method is employed to analyze the experimental data.The experiment was focused on the effect of the inclination angle on the initial position distribution of Taylor bubbles.The formation criterion of Taylor bubbles was confirmed by analyzing the images of Taylor bubbles.The experimental results show that the initial position of Taylor bubble increased first,and then decreased with the increasing inclination angle,with the maximum at 30°.The standard deviation of the initial position of Taylor bubble in tubes was different with different inner diameters.The lognormal shape was fitted to the measured the initial position distributions of Taylor bubbles in the cryogenic tubes.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
In this study, experiments have been performed for an investigation on heat transfer of water in an inclined downward tube with an inner diameter of 20 mm and an inclined angle of 45° from the horizon, with the r...In this study, experiments have been performed for an investigation on heat transfer of water in an inclined downward tube with an inner diameter of 20 mm and an inclined angle of 45° from the horizon, with the range of pressure from 11.5 to 28 MPa, mass flux from 450 to 1550 kg/(m2 s), and heat flux from 50 to 585 k W/m2. Based on the experimental data, the temperature distribution in the tube wall was derived. The heat transfer characteristics of inclined downward flow were compared with that of vertical downward flow. The effects of heat flux on wall temperature were analyzed and the corresponding empirical correlations were presented. The results show that heat transfer characteristics of water in the inclined downward tube are not uniform along the circumference from the top surface to the bottom surface. An increase in heat flux exacerbates the non-uniformity. At subcritical pressures, both dry-out and departure from nucleate boiling(DNB) occur at the top surface of the inclined downward tube; inversely, only dry-out takes place on the bottom surface of the inclined downward tube and in the vertical downward tube. At near-critical pressures, DNB and dry-out occur in the comparing tubes with greater possibility. At supercritical pressures, heat transfer gets enhanced in the pseudo-critical enthalpy region; in the high enthalpy region, the top surface temperature of the inclined downward tube decreases obviously.展开更多
The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tu...The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.展开更多
基金Supported by the National Natural Science Foundation of China (50476015) and National High Technology Research and Development Program of China (2006AA09Z333).
文摘An experimental study was carried out to understand the phenomena of the boiling flow of liquid nitrogen in an inclined tube with closed bottom by using a high speed motion analyzer. The experimental tube is 0.018 m ID and 1.0m in length. The range of the inclination angle is 45°-9° from the horizontal. The experiment focused on the effect of the inclination angle show that the mean liquid slug length and Taylor bubble length increase with the increasing xlD at various inclination angles. At the same x/D, the mean liquid slug length and Taylor bubble length increase first, and then decrease with decreasing inclination angles, with the maximum at 60°. In the vertical tube, standard deviation of the nitrogen Taylor bubble iength increase with the increasing xlD. For the inclined tube, standard deviation of the nitrogen Taylor bubble length increases first, and then decreases with the increasing x/D. Standard deviation of the liquid slug length increases with increasing x/D for all inclination angles.
基金Project (2007AA03Z119) supported by the National High Technology Research and Development Program of ChinaProjects (2102029,2072012) supported by Beijing Natural Science Foundation
文摘Based on analysis of the main forming methods for double-layer tube,a new short-term forming process called thixo-co-extrusion was put forward in producing double-layer tube by combining the semi-solid forming technology and multi-billet extrusion technology.By means of forward extrusion with shaft,a finite element model of thixo-co-extrusion with A356/AZ91 was constructed by ABAQUS FEM software.The distributions of temperature field and velocity field as well as the contact force during thixo-co-extrusion were studied.The diffusion on the interfaces between inner and outer metals was analyzed.The simulation results show that,in the beginning of thixo-co-extrusion,the uneven wall thickness can appear.To thickness ratio of 5:5,a double layer tube with good inner and outer wall combination can be realized if VA356 is 0.12 m/s and VAZ91 is 0.20 m/s.
基金Supported by the National Natural Science Foundation of China (50476015) and National High-Yech Research and Develop ment Program of China (2006AA09Z333).
文摘An experimental study was carried out to understand the phenomena of the boiling flow of liquid nitrogen in inclined tubes with closed bottom by using the high speed digital camera.The tubes in the experiment are 0.018 m and 0.014 m in inner diameter and 1.0 m in length.The range of the inclination angles is 0-45° from the vertical.The statistical method is employed to analyze the experimental data.The experiment was focused on the effect of the inclination angle on the initial position distribution of Taylor bubbles.The formation criterion of Taylor bubbles was confirmed by analyzing the images of Taylor bubbles.The experimental results show that the initial position of Taylor bubble increased first,and then decreased with the increasing inclination angle,with the maximum at 30°.The standard deviation of the initial position of Taylor bubble in tubes was different with different inner diameters.The lognormal shape was fitted to the measured the initial position distributions of Taylor bubbles in the cryogenic tubes.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金supported by the "Strategic Priority Research Program" Demonstration of Key Technologies for Clean and Efficient Utilization of Low-rank Coal (Grant No. XDA07030100)
文摘In this study, experiments have been performed for an investigation on heat transfer of water in an inclined downward tube with an inner diameter of 20 mm and an inclined angle of 45° from the horizon, with the range of pressure from 11.5 to 28 MPa, mass flux from 450 to 1550 kg/(m2 s), and heat flux from 50 to 585 k W/m2. Based on the experimental data, the temperature distribution in the tube wall was derived. The heat transfer characteristics of inclined downward flow were compared with that of vertical downward flow. The effects of heat flux on wall temperature were analyzed and the corresponding empirical correlations were presented. The results show that heat transfer characteristics of water in the inclined downward tube are not uniform along the circumference from the top surface to the bottom surface. An increase in heat flux exacerbates the non-uniformity. At subcritical pressures, both dry-out and departure from nucleate boiling(DNB) occur at the top surface of the inclined downward tube; inversely, only dry-out takes place on the bottom surface of the inclined downward tube and in the vertical downward tube. At near-critical pressures, DNB and dry-out occur in the comparing tubes with greater possibility. At supercritical pressures, heat transfer gets enhanced in the pseudo-critical enthalpy region; in the high enthalpy region, the top surface temperature of the inclined downward tube decreases obviously.
基金supported by the National Natural Science Foundation of China(Nos.91963202,52072372,and 52232007).
文摘The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.