A thermal conduction model is applied to speed up the numerical analysis of the temperature distribution and the weld pool geometry of full penetration in gas tungsten arc (GTA) welding. With considering both top an...A thermal conduction model is applied to speed up the numerical analysis of the temperature distribution and the weld pool geometry of full penetration in gas tungsten arc (GTA) welding. With considering both top and bottom flee surface deformation of full-penetrated weld pool, three-dimensional weld pool with melting front and solidification front is predicted. Welding experiments are conducted to measure the melting front curves at the top surface and the longitudinal section of the weld. It shows that the predicted and measured results are in good agreement.展开更多
The laser remelting with a two-layer material system (upper material was Al-30 % Ti-20 % Ni alloy,substrate was commercial aluminum alloy) and the laser cladding of a commercial 45 steel with copper Powder (including ...The laser remelting with a two-layer material system (upper material was Al-30 % Ti-20 % Ni alloy,substrate was commercial aluminum alloy) and the laser cladding of a commercial 45 steel with copper Powder (including 25%SiC) were carried out using a 2kW continuous CO2 laser. For the case of laser remelting, a upper Pool in the alloying layer and a lower Pool in the substrate separated by the unmelted Al-Ti-Ni alloy were observed. For laser cladding, a stratified Pool was observed, whose top layer was Cu alloy liquid and bottom was Fe alloy liquid. The mechanism of laser Pool separation and stratification is illustrated by numerical calculation of heat transter process of the two-layer system, combining with material physical properties (especially mixed enthalpy). A classification criterion for laser Pool with the two-layer material system has been presented and four types of the laser Pool are divided into unique Pool, separated Pool, mixed Pool and stratified pool,which provides a theoretical basis for obtaining a excellent surface coating.展开更多
In this work,the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping(LENS)process is analyzed.Firstly,the basic structure of the melt pool model of the LENS process i...In this work,the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping(LENS)process is analyzed.Firstly,the basic structure of the melt pool model of the LENS process is established and the necessary assumptions are made.Then,the establishment process of the multi-physical field model of the melt pool is introduced in detail.It is concluded that the simulation model results are highly consistent with the online measurement experiment results in terms of melt pool profile,space temperature gradient,and time temperature gradient.Meanwhile,some parameters,such as the 3D morphology and surface fluid field of the melt pool,which are not obtained in the online measurement experiment,are analyzed.Finally,the influence of changing the scanning speed on the profile,peak temperature,and temperature gradient of the single-line melt pool is also analyzed,and the following conclusions are obtained:With the increase in scanning speed,the profile of the melt pool gradually becomes slender;The relationship between peak temperature and scanning speed is approximately linear in a certain speed range;The space temperature gradient at the tail of the melt pool under different scanning speeds hardly changes with the scanning speed,and the time temperature gradient at the tail of the melt pool is in direct proportion to the scanning speed.展开更多
为了预测下封头内双层熔池的流动和传热过程,基于不同湍流模型,同时采用凝固熔化模型对堆芯熔池研究装置(corium pool research apparatus,COPRA)双层熔池实验进行计算流体力学(CFD)数值模拟,通过数值计算获得准稳态下熔池的温度、沿壁...为了预测下封头内双层熔池的流动和传热过程,基于不同湍流模型,同时采用凝固熔化模型对堆芯熔池研究装置(corium pool research apparatus,COPRA)双层熔池实验进行计算流体力学(CFD)数值模拟,通过数值计算获得准稳态下熔池的温度、沿壁面的热流密度与内壁面壳层的分布,将模拟结果与实验值进行比较,评价不同湍流模型的适用性和准确性,并进行湍流模型优选。结果表明,壁面模化大涡模拟(WMLES)湍流模型对下封头内双层熔融池流动与传热模拟的准确性和适用性最好;基于WMLES湍流模型,氧化层温度随着熔池高度增大而增大,氧化层上部存在强烈的湍流,在熔池底部的壳层最厚。展开更多
Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF)...Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF).However,its capabilities for being implemented as a reliable tool for material design,where minor changes in material-related parameters must be accurately captured,is still in question.In the present research,first,a thermo-fluid computational fluid dynamics(CFD)model is developed and validated against experimental data.Considering the predicted material properties of the pure Mg and commercial ZK60 and WE43 Mg alloys,parametric studies are done attempting to elucidate how the difference in some of the material properties,i.e.,saturated vapor pressure,viscosity,and solidification range,can influence the melt pool dynamics.It is found that a higher saturated vapor pressure,associated with the ZK60 alloy,leads to a deeper unstable keyhole,increasing the keyhole-induced porosity and evaporation mass loss.Higher viscosity and wider solidification range can increase the non-uniformity of temperature and velocity distribution on the keyhole walls,resulting in increased keyhole instability and formation of defects.Finally,the WE43 alloy showed the best behavior in terms of defect formation and evaporation mass loss,providing theoretical support to the extensive use of this alloy in L-PBF.In summary,this study suggests an approach to investigate the effect of materials-related parameters on L-PBF melting and solidification,which can be extremely helpful for future design of new alloys suitable for L-PBF.展开更多
The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile exper...The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.展开更多
Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM ...Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.展开更多
基金The authors are grateful to the financial support for this project from the National Natural Science Foundation of China under grant No. 50475131.
文摘A thermal conduction model is applied to speed up the numerical analysis of the temperature distribution and the weld pool geometry of full penetration in gas tungsten arc (GTA) welding. With considering both top and bottom flee surface deformation of full-penetrated weld pool, three-dimensional weld pool with melting front and solidification front is predicted. Welding experiments are conducted to measure the melting front curves at the top surface and the longitudinal section of the weld. It shows that the predicted and measured results are in good agreement.
文摘The laser remelting with a two-layer material system (upper material was Al-30 % Ti-20 % Ni alloy,substrate was commercial aluminum alloy) and the laser cladding of a commercial 45 steel with copper Powder (including 25%SiC) were carried out using a 2kW continuous CO2 laser. For the case of laser remelting, a upper Pool in the alloying layer and a lower Pool in the substrate separated by the unmelted Al-Ti-Ni alloy were observed. For laser cladding, a stratified Pool was observed, whose top layer was Cu alloy liquid and bottom was Fe alloy liquid. The mechanism of laser Pool separation and stratification is illustrated by numerical calculation of heat transter process of the two-layer system, combining with material physical properties (especially mixed enthalpy). A classification criterion for laser Pool with the two-layer material system has been presented and four types of the laser Pool are divided into unique Pool, separated Pool, mixed Pool and stratified pool,which provides a theoretical basis for obtaining a excellent surface coating.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2017YFB1103900)National Natural Science Foundation of China(Grant No.11972084)+1 种基金National Science and Technology Major Project(2017-VI-0003-0073)Beijing National Science Foundation(1192014).
文摘In this work,the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping(LENS)process is analyzed.Firstly,the basic structure of the melt pool model of the LENS process is established and the necessary assumptions are made.Then,the establishment process of the multi-physical field model of the melt pool is introduced in detail.It is concluded that the simulation model results are highly consistent with the online measurement experiment results in terms of melt pool profile,space temperature gradient,and time temperature gradient.Meanwhile,some parameters,such as the 3D morphology and surface fluid field of the melt pool,which are not obtained in the online measurement experiment,are analyzed.Finally,the influence of changing the scanning speed on the profile,peak temperature,and temperature gradient of the single-line melt pool is also analyzed,and the following conclusions are obtained:With the increase in scanning speed,the profile of the melt pool gradually becomes slender;The relationship between peak temperature and scanning speed is approximately linear in a certain speed range;The space temperature gradient at the tail of the melt pool under different scanning speeds hardly changes with the scanning speed,and the time temperature gradient at the tail of the melt pool is in direct proportion to the scanning speed.
基金supported by the Natu⁃ral Science Foundation of Shandong Province(No.ZR2021QE230)the Talent Research Project of Qilu Uni⁃versity of Technology(Shandong Academy of Sciences)(No.2023RCKY118)the National Natural Science Foundation of China(Nos.52275438,52205480).
文摘为了预测下封头内双层熔池的流动和传热过程,基于不同湍流模型,同时采用凝固熔化模型对堆芯熔池研究装置(corium pool research apparatus,COPRA)双层熔池实验进行计算流体力学(CFD)数值模拟,通过数值计算获得准稳态下熔池的温度、沿壁面的热流密度与内壁面壳层的分布,将模拟结果与实验值进行比较,评价不同湍流模型的适用性和准确性,并进行湍流模型优选。结果表明,壁面模化大涡模拟(WMLES)湍流模型对下封头内双层熔融池流动与传热模拟的准确性和适用性最好;基于WMLES湍流模型,氧化层温度随着熔池高度增大而增大,氧化层上部存在强烈的湍流,在熔池底部的壳层最厚。
基金the financial supports received from Wenner-Gren foundation(UPD2021-0229),JernkontoretSTT(Stiftelsen för Tillämpad Termodynamik).
文摘Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF).However,its capabilities for being implemented as a reliable tool for material design,where minor changes in material-related parameters must be accurately captured,is still in question.In the present research,first,a thermo-fluid computational fluid dynamics(CFD)model is developed and validated against experimental data.Considering the predicted material properties of the pure Mg and commercial ZK60 and WE43 Mg alloys,parametric studies are done attempting to elucidate how the difference in some of the material properties,i.e.,saturated vapor pressure,viscosity,and solidification range,can influence the melt pool dynamics.It is found that a higher saturated vapor pressure,associated with the ZK60 alloy,leads to a deeper unstable keyhole,increasing the keyhole-induced porosity and evaporation mass loss.Higher viscosity and wider solidification range can increase the non-uniformity of temperature and velocity distribution on the keyhole walls,resulting in increased keyhole instability and formation of defects.Finally,the WE43 alloy showed the best behavior in terms of defect formation and evaporation mass loss,providing theoretical support to the extensive use of this alloy in L-PBF.In summary,this study suggests an approach to investigate the effect of materials-related parameters on L-PBF melting and solidification,which can be extremely helpful for future design of new alloys suitable for L-PBF.
基金financially supported by the Shanghai Materials Genome Institute No. 5 (No. 16DZ2260605)the Shanghai Sailing Program (No. 17YF1405400)the Project to Strengthen Industrial Development at the Grass-roots Level (No. TC160A310/19)
文摘The corrosion behavior and mechanical properties of 316 L stainless steel(SS) fabricated via selective laser melting(SLM) were clarified by potentiodynamic polarization measurements, immersion tests, and tensile experiments. The microstructural anisotropy of SLMed 316 L SS was also investigated by electron back-scattered diffraction and transmission electron microscopy. The grain sizes of the SLMed 316 L SS in the XOZ plane were smaller than those of the SLMed 316 L SS in the XOY plane, and a greater number of low-angle boundaries were present in the XOY plane, resulting in lower elongation for the XOY plane than for the XOZ plane. The SLMed 316 L was expected to exhibit higher strength but lower ductility than the wrought 316 L, which was attributed to the high density of dislocations. The pitting potentials of the SLMed 316 L samples were universally higher than those of the wrought sample in chloride solutions because of the annihilation of MnS or(Ca,Al)-oxides during the rapid solidification. However, the molten pool boundaries preferentially dissolved in aggressive solutions and the damage of the SLMed 316 L in FeCl3 solution was more serious after long-term service, indicating poor durability.
基金financially supported by the KGW Program(Grant No.2019XXX.XX4007Tm)the National Natural Science Foundation of China(Grant Nos.51905188,52090042 and 51775205)。
文摘Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.