To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model ...To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model uses frame-level features and takes the temporal information of emotion speech as the input of the LSTM layer.Here,a multi-head time-dimension attention(MHTA)layer was employed to linearly project the output of the LSTM layer into different subspaces for the reduced-dimension context vectors.To provide relative vital information from other dimensions,the output of MHTA,the output of feature-dimension attention,and the last time-step output of LSTM were utilized to form multiple context vectors as the input of the fully connected layer.To improve the performance of multiple vectors,feature-dimension attention was employed for the all-time output of the first LSTM layer.The proposed model was evaluated on the eNTERFACE and GEMEP corpora,respectively.The results indicate that the proposed model outperforms LSTM by 14.6%and 10.5%for eNTERFACE and GEMEP,respectively,proving the effectiveness of the proposed model in SER tasks.展开更多
Due to the closed working environment of shield machines,the construction personnel cannot observe the construction geological environment,which seriously restricts the safety and efficiency of the tunneling process.I...Due to the closed working environment of shield machines,the construction personnel cannot observe the construction geological environment,which seriously restricts the safety and efficiency of the tunneling process.In this study,we present an enhanced multi-head self-attention convolution neural network(EMSACNN)with two-stage feature extraction for geological condition prediction of shield machine.Firstly,we select 30 important parameters according to statistical analysis method and the working principle of the shield machine.Then,we delete the non-working sample data,and combine 10 consecutive data as the input of the model.Thereafter,to deeply mine and extract essential and relevant features,we build a novel model combined with the particularity of the geological type recognition task,in which an enhanced multi-head self-attention block is utilized as the first feature extractor to fully extract the correlation of geological information of adjacent working face of tunnel,and two-dimensional CNN(2dCNN)is utilized as the second feature extractor.The performance and superiority of proposed EMSACNN are verified by the actual data collected by the shield machine used in the construction of a double-track tunnel in Guangzhou,China.The results show that EMSACNN achieves at least 96%accuracy on the test sets of the two tunnels,and all the evaluation indicators of EMSACNN are much better than those of classical AI model and the model that use only the second-stage feature extractor.Therefore,the proposed EMSACNN achieves high accuracy and strong generalization for geological information prediction of shield machine,which is of great guiding significance to engineering practice.展开更多
Considering the stealthiness and persistence of Advanced Persistent Threats(APTs),system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host....Considering the stealthiness and persistence of Advanced Persistent Threats(APTs),system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host.Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks,and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection,which requires lots of manual efforts to locate attack entities.This paper proposes an APT-exploited process detection approach called ThreatSniffer,which constructs the benign provenance graph from attack-free audit logs,fits normal system entity interactions and then detects APT-exploited processes by predicting the rationality of entity interactions.Firstly,ThreatSniffer understands system entities in terms of their file paths,interaction sequences,and the number distribution of interaction types and uses the multi-head self-attention mechanism to fuse these semantics.Then,based on the insight that APT-exploited processes interact with system entities they should not invoke,ThreatSniffer performs negative sampling on the benign provenance graph to generate non-existent edges,thus characterizing irrational entity interactions without requiring APT attack samples.At last,it employs a heterogeneous graph neural network as the interaction prediction model to aggregate the contextual information of entity interactions,and locate processes exploited by attackers,thereby achieving fine-grained APT detection.Evaluation results demonstrate that anomaly-based detection enables ThreatSniffer to identify all attack activities.Compared to the node-level APT detection method APT-KGL,ThreatSniffer achieves a 6.1%precision improvement because of its comprehensive understanding of entity semantics.展开更多
Nowadays,with the rapid development of industrial Internet technology,on the one hand,advanced industrial control systems(ICS)have improved industrial production efficiency.However,there are more and more cyber-attack...Nowadays,with the rapid development of industrial Internet technology,on the one hand,advanced industrial control systems(ICS)have improved industrial production efficiency.However,there are more and more cyber-attacks targeting industrial control systems.To ensure the security of industrial networks,intrusion detection systems have been widely used in industrial control systems,and deep neural networks have always been an effective method for identifying cyber attacks.Current intrusion detection methods still suffer from low accuracy and a high false alarm rate.Therefore,it is important to build a more efficient intrusion detection model.This paper proposes a hybrid deep learning intrusion detection method based on convolutional neural networks and bidirectional long short-term memory neural networks(CNN-BiLSTM).To address the issue of imbalanced data within the dataset and improve the model’s detection capabilities,the Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors(SMOTE-ENN)algorithm is applied in the preprocessing phase.This algorithm is employed to generate synthetic instances for the minority class,simultaneously mitigating the impact of noise in the majority class.This approach aims to create a more equitable distribution of classes,thereby enhancing the model’s ability to effectively identify patterns in both minority and majority classes.In the experimental phase,the detection performance of the method is verified using two data sets.Experimental results show that the accuracy rate on the CICIDS-2017 data set reaches 97.7%.On the natural gas pipeline dataset collected by Lan Turnipseed from Mississippi State University in the United States,the accuracy rate also reaches 85.5%.展开更多
The deep learning advancements have greatly improved the performance of speech recognition systems,and most recent systems are based on the Recurrent Neural Network(RNN).Overall,the RNN works fine with the small seque...The deep learning advancements have greatly improved the performance of speech recognition systems,and most recent systems are based on the Recurrent Neural Network(RNN).Overall,the RNN works fine with the small sequence data,but suffers from the gradient vanishing problem in case of large sequence.The transformer networks have neutralized this issue and have shown state-of-the-art results on sequential or speech-related data.Generally,in speech recognition,the input audio is converted into an image using Mel-spectrogram to illustrate frequencies and intensities.The image is classified by the machine learning mechanism to generate a classification transcript.However,the audio frequency in the image has low resolution and causing inaccurate predictions.This paper presents a novel end-to-end binary view transformer-based architecture for speech recognition to cope with the frequency resolution problem.Firstly,the input audio signal is transformed into a 2D image using Mel-spectrogram.Secondly,the modified universal transformers utilize the multi-head attention to derive contextual information and derive different speech-related features.Moreover,a feedforward neural network is also deployed for classification.The proposed system has generated robust results on Google’s speech command dataset with an accuracy of 95.16%and with minimal loss.The binary-view transformer eradicates the eventuality of the over-fitting problem by deploying a multiview mechanism to diversify the input data,and multi-head attention captures multiple contexts from the data’s feature map.展开更多
基金The National Natural Science Foundation of China(No.61571106,61633013,61673108,81871444).
文摘To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model uses frame-level features and takes the temporal information of emotion speech as the input of the LSTM layer.Here,a multi-head time-dimension attention(MHTA)layer was employed to linearly project the output of the LSTM layer into different subspaces for the reduced-dimension context vectors.To provide relative vital information from other dimensions,the output of MHTA,the output of feature-dimension attention,and the last time-step output of LSTM were utilized to form multiple context vectors as the input of the fully connected layer.To improve the performance of multiple vectors,feature-dimension attention was employed for the all-time output of the first LSTM layer.The proposed model was evaluated on the eNTERFACE and GEMEP corpora,respectively.The results indicate that the proposed model outperforms LSTM by 14.6%and 10.5%for eNTERFACE and GEMEP,respectively,proving the effectiveness of the proposed model in SER tasks.
基金supported by the National Key R&D Program of China(Grant No.2019YFB1705203)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0102).
文摘Due to the closed working environment of shield machines,the construction personnel cannot observe the construction geological environment,which seriously restricts the safety and efficiency of the tunneling process.In this study,we present an enhanced multi-head self-attention convolution neural network(EMSACNN)with two-stage feature extraction for geological condition prediction of shield machine.Firstly,we select 30 important parameters according to statistical analysis method and the working principle of the shield machine.Then,we delete the non-working sample data,and combine 10 consecutive data as the input of the model.Thereafter,to deeply mine and extract essential and relevant features,we build a novel model combined with the particularity of the geological type recognition task,in which an enhanced multi-head self-attention block is utilized as the first feature extractor to fully extract the correlation of geological information of adjacent working face of tunnel,and two-dimensional CNN(2dCNN)is utilized as the second feature extractor.The performance and superiority of proposed EMSACNN are verified by the actual data collected by the shield machine used in the construction of a double-track tunnel in Guangzhou,China.The results show that EMSACNN achieves at least 96%accuracy on the test sets of the two tunnels,and all the evaluation indicators of EMSACNN are much better than those of classical AI model and the model that use only the second-stage feature extractor.Therefore,the proposed EMSACNN achieves high accuracy and strong generalization for geological information prediction of shield machine,which is of great guiding significance to engineering practice.
基金This work was supported by the National Natural Science Foundation of China(Nos.U19A2081,62202320)the Fundamental Research Funds for the Central Universities(Nos.2022SCU12116,2023SCU12129,2023SCU12126)+1 种基金the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129)the Key Laboratory of Data Protection and Intelligent Management(Sichuan University),Ministry of Education.
文摘Considering the stealthiness and persistence of Advanced Persistent Threats(APTs),system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host.Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks,and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection,which requires lots of manual efforts to locate attack entities.This paper proposes an APT-exploited process detection approach called ThreatSniffer,which constructs the benign provenance graph from attack-free audit logs,fits normal system entity interactions and then detects APT-exploited processes by predicting the rationality of entity interactions.Firstly,ThreatSniffer understands system entities in terms of their file paths,interaction sequences,and the number distribution of interaction types and uses the multi-head self-attention mechanism to fuse these semantics.Then,based on the insight that APT-exploited processes interact with system entities they should not invoke,ThreatSniffer performs negative sampling on the benign provenance graph to generate non-existent edges,thus characterizing irrational entity interactions without requiring APT attack samples.At last,it employs a heterogeneous graph neural network as the interaction prediction model to aggregate the contextual information of entity interactions,and locate processes exploited by attackers,thereby achieving fine-grained APT detection.Evaluation results demonstrate that anomaly-based detection enables ThreatSniffer to identify all attack activities.Compared to the node-level APT detection method APT-KGL,ThreatSniffer achieves a 6.1%precision improvement because of its comprehensive understanding of entity semantics.
基金support from the Liaoning Province Nature Fund Project(No.2022-MS-291)the Scientific Research Project of Liaoning Province Education Department(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457,JYTMS20231488).
文摘Nowadays,with the rapid development of industrial Internet technology,on the one hand,advanced industrial control systems(ICS)have improved industrial production efficiency.However,there are more and more cyber-attacks targeting industrial control systems.To ensure the security of industrial networks,intrusion detection systems have been widely used in industrial control systems,and deep neural networks have always been an effective method for identifying cyber attacks.Current intrusion detection methods still suffer from low accuracy and a high false alarm rate.Therefore,it is important to build a more efficient intrusion detection model.This paper proposes a hybrid deep learning intrusion detection method based on convolutional neural networks and bidirectional long short-term memory neural networks(CNN-BiLSTM).To address the issue of imbalanced data within the dataset and improve the model’s detection capabilities,the Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors(SMOTE-ENN)algorithm is applied in the preprocessing phase.This algorithm is employed to generate synthetic instances for the minority class,simultaneously mitigating the impact of noise in the majority class.This approach aims to create a more equitable distribution of classes,thereby enhancing the model’s ability to effectively identify patterns in both minority and majority classes.In the experimental phase,the detection performance of the method is verified using two data sets.Experimental results show that the accuracy rate on the CICIDS-2017 data set reaches 97.7%.On the natural gas pipeline dataset collected by Lan Turnipseed from Mississippi State University in the United States,the accuracy rate also reaches 85.5%.
基金This research was supported by Suranaree University of Technology,Thailand,Grant Number:BRO7-709-62-12-03.
文摘The deep learning advancements have greatly improved the performance of speech recognition systems,and most recent systems are based on the Recurrent Neural Network(RNN).Overall,the RNN works fine with the small sequence data,but suffers from the gradient vanishing problem in case of large sequence.The transformer networks have neutralized this issue and have shown state-of-the-art results on sequential or speech-related data.Generally,in speech recognition,the input audio is converted into an image using Mel-spectrogram to illustrate frequencies and intensities.The image is classified by the machine learning mechanism to generate a classification transcript.However,the audio frequency in the image has low resolution and causing inaccurate predictions.This paper presents a novel end-to-end binary view transformer-based architecture for speech recognition to cope with the frequency resolution problem.Firstly,the input audio signal is transformed into a 2D image using Mel-spectrogram.Secondly,the modified universal transformers utilize the multi-head attention to derive contextual information and derive different speech-related features.Moreover,a feedforward neural network is also deployed for classification.The proposed system has generated robust results on Google’s speech command dataset with an accuracy of 95.16%and with minimal loss.The binary-view transformer eradicates the eventuality of the over-fitting problem by deploying a multiview mechanism to diversify the input data,and multi-head attention captures multiple contexts from the data’s feature map.