In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to ...In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.展开更多
Evolutionary neural network(ENN)shows high performance in function optimization and in finding approximately global optima from searching large and complex spaces.It is one of the most efficient and adaptive optimizat...Evolutionary neural network(ENN)shows high performance in function optimization and in finding approximately global optima from searching large and complex spaces.It is one of the most efficient and adaptive optimization techniques used widely to provide candidate solutions that lead to the fitness of the problem.ENN has the extraordinary ability to search the global and learning the approximate optimal solution regardless of the gradient information of the error functions.However,ENN requires high computation and processing which requires parallel processing platforms such as field programmable gate arrays(FPGAs)and graphic processing units(GPUs)to achieve a good performance.This work involves different new implementations of ENN by exploring and adopting different techniques and opportunities for parallel processing.Different versions of ENN algorithm have also been implemented and parallelized on FPGAs platform for low latency by exploiting the parallelism and pipelining approaches.Real data form mass spectrometry data(MSD)application was tested to examine and verify our implementations.This is a very important and extensive computation application which needs to search and find the optimal features(peaks)in MSD in order to distinguish cancer patients from control patients.ENN algorithm is also implemented and parallelized on single core and GPU platforms for comparison purposes.The computation time of our optimized algorithm on FPGA and GPU has been improved by a factor of 6.75 and 6,respectively.展开更多
文摘In this paper a hybrid parallel multi-objective genetic algorithm is proposed for solving 0/1 knapsack problem. Multi-objective problems with non-convex and discrete Pareto front can take enormous computation time to converge to the true Pareto front. Hence, the classical multi-objective genetic algorithms (MOGAs) (i.e., non- Parallel MOGAs) may fail to solve such intractable problem in a reasonable amount of time. The proposed hybrid model will combine the best attribute of island and Jakobovic master slave models. We conduct an extensive experimental study in a multi-core system by varying the different size of processors and the result is compared with basic parallel model i.e., master-slave model which is used to parallelize NSGA-II. The experimental results confirm that the hybrid model is showing a clear edge over master-slave model in terms of processing time and approximation to the true Pareto front.
文摘Evolutionary neural network(ENN)shows high performance in function optimization and in finding approximately global optima from searching large and complex spaces.It is one of the most efficient and adaptive optimization techniques used widely to provide candidate solutions that lead to the fitness of the problem.ENN has the extraordinary ability to search the global and learning the approximate optimal solution regardless of the gradient information of the error functions.However,ENN requires high computation and processing which requires parallel processing platforms such as field programmable gate arrays(FPGAs)and graphic processing units(GPUs)to achieve a good performance.This work involves different new implementations of ENN by exploring and adopting different techniques and opportunities for parallel processing.Different versions of ENN algorithm have also been implemented and parallelized on FPGAs platform for low latency by exploiting the parallelism and pipelining approaches.Real data form mass spectrometry data(MSD)application was tested to examine and verify our implementations.This is a very important and extensive computation application which needs to search and find the optimal features(peaks)in MSD in order to distinguish cancer patients from control patients.ENN algorithm is also implemented and parallelized on single core and GPU platforms for comparison purposes.The computation time of our optimized algorithm on FPGA and GPU has been improved by a factor of 6.75 and 6,respectively.