Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by us...Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by using monthly horizontal wind field from NCEP/NCAR reanalysis data from 1948—2011. The following major conclusions are drawn: First, the double-layer structure of the HC is an objective fact, and it constantly exists in April,May, June, October and November in the Southern Hemisphere. Second, the double-layer structure is more obvious in the Southern than in the Northern Hemisphere. Since the double-layer structure is sloped in the vertical direction, it should be taken into consideration when analyzing the variations of the strength and location of the center of the HC.Third, the strength of the double-layer structure of the HC in the Southern Hemisphere consistently exhibits decadal variations with a strong, weak and strong pattern in all five months(April, May, June, October, and November), with cycles of 20-30 a and 40-60 a. Fourth, the center of the HC(mean position of the double-layer structure) in the Southern Hemisphere consistently and remarkably shifts southward in all the five months. The net poleward shifts over the 64 years are 5.18°, 2.11°, 2.50°, 1.79° and 5.76° for the five respective months, with a mean shift of 3.47°.展开更多
In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engin...In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engineers too confused to fully recognize its feasibility of this structure. Hence, based on the previous experimental research on the Taohutu mine construction project in Ordos in Inner Mongolia, this research paper aims to provide a widely deep numerical analysis by the usage of the finite element software, in fact, to establish the corresponding numerical analysis model and make a comparison with the experimental data to get the rationality of the verified model. The influence of the composite characteristics of the steel plate and concrete on the ultimate bearing capacity and stress field of the shaft wall structure is studied here through the method of multi-factor analysis. Also, the optimal design scheme of the double-layer steel plate and concrete composite shaft wall structure is proposed in this research paper.展开更多
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co...Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.展开更多
The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subduc...The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subducted continental plates is generally higher than that derived from numerical simulation.In this paper,a two-dimensional kinematic model is used to study the thermal structure of continental subduction zones,with or without a preceding oceanic slab.The results show that the removal of the preceding oceanic slab can effectively increase the slab surface temperature of the continental subduction zone in the early stage of subduction.This can sufficiently explain the difference between the cold thermal structure obtained from previous modeling results and the hot thermal structure obtained from rock sample data.展开更多
With the opening of ancient Tibetan structures to visitors worldwide, human load has become the principal live load on these structures. This project studies the properties of the floor structure of an ancient Tibetan...With the opening of ancient Tibetan structures to visitors worldwide, human load has become the principal live load on these structures. This project studies the properties of the floor structure of an ancient Tibetan building and its behavior under human-induced load effects. Tests were conducted with static and dynamic crowd load, including stepping and jogging by people at a fixed position. The tests show that the floor structure does not behave as a continuous slab. It takes the load from local areas with minimal load transference properties. The acceleration response shows significant peaks when the footstep frequency is close to the natural frequency of the s~'ucture, but the human jogging excitation frequency does not have any obvious effect on the structural response. The elastic modulus of the Agatu material is estimated to be close to zero from the measured natural frequency of the slab. The Agatu material is concluded to be a discrete compacted material with insignificant contribution to the structural rigidity of the floor slab.展开更多
A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of...A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of hot surface is mainly governed by cooling structure and heat-transfer conditions. For hot surface centricity, maximum surface temperature promotions are 30 ℃and 15 ℃ with thickness increments of copper plates of 5 mm and nickel layers of 1 ram, respectively. The surface temperature without nickel layers is depressed by 10 ℃ when the depth increment of water slots is 2 mm and that with nickel layers adjacent to and away from mold outlet is depressed by 7℃ and 5 ℃, respectively. The specific trend of temperature distribution of transverse sections of copper plates is nearly free of cooling structure, but temperature is changed and its law is similar to the corresponding surface temperature.展开更多
By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) w...By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) with nA, the number of electrons on the strongest covalent bonds, and the structure formation factor S were investigated, and an electron structural criterion to control and to eliminate the centerline segregation was advanced. Basing on this, the electron structures of a part of rare earth phosphides and sulfides are calculated, the physical mechanism that rare earth elements can control the segregation of phosphor and sulfur is analyzed, and the criterion is well verified.展开更多
The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-colu...The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-column and shearwall structure in the practical engineering,the key parameters of slab-column and shearwall structure and frame-shearwall structure such as deflection,punching shear behavior,story drift and capability curve were worked out by static plastic analysis,elastic-plastic time history analysis and pushover analysis,then the suitability of out-of-codes tall slab-column and shearwall structure was evaluated.The results show that the out-of-codes tall slab-column and shearwall structure studies could satisfy the require of deflection and punching shear behavior,the story drift under 7 degree expected rare earthquake waves could satisfy the limit value in the codes and the seismic design spectrum was crossed by the capability curve of the structure and the structure could not collapse.The conclusion is that slab-column and shearwall structure with reasonable design built in Ⅱ soil site of intensity 7 seismic fortification zone can be designed higher than the limit height in the codes.展开更多
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana...In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.展开更多
Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz....Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz. For the singlelayer absorbers, the nanocrystalline SrFe12O19 microfibers show some microwave absorptions at 6 GHz 18 GHz, with a minimum reflection loss (RL) value of -11.9 dB at 14.1 GHz for a specimen thickness of 3.0 mm, while for the nanocrystalline α-Fe microfibers, their absorptions largely take place at 15 GHz-18 GHz with the RL value exceeding -10 dB, with a minimum .RL value of about -24 dB at 17.5 GHz for a specimen thickness of 0.7 mm. For the doublelayer absorber with an absorbing layer of α-Fe microfibers with a thickness of 0.7 mm and matching layer of SrFe12O19 microfibers with a thickness of 1.3 ram, the minimum RL value is about -63 dB at 16.4 GHz and the absorption band width is about 6.7 GHz ranging from 11.3 GHz to 18 GHz with the RL value exceeding -10 dB which covers the whole Ku-band (12.4 GHz 18 GHz) and 27% of X-band (8.2 GHz 12.4 GHz).展开更多
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe...To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials.展开更多
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace...Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.展开更多
The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules ...The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules has been developed to produce parametric models of slab frame bridges. Design loads and load combinations are based on the Eurocode design standard and the Swedish design standard for bridges. The necessary reinforcement diagrams to satisfy the ultimate and serviceability limit states, including fatigue checks for the whole bridge, are calculated according to the aforementioned standards. Optimization techniques based on the genetic algorithm and the pattern search method are applied. A case study is presented to highlight the efficiency of the applied optimization algorithms. This methodology has been applied in the design process for the time-effective, material-efficient, and optimal design of concrete slab frame bridges.展开更多
This paper aims to contribute to the classification and specification of glass fiber reinforced concrete (GFRC) and to deal with the question if structural glass fiber reinforced concrete as a special kind of glass fi...This paper aims to contribute to the classification and specification of glass fiber reinforced concrete (GFRC) and to deal with the question if structural glass fiber reinforced concrete as a special kind of glass fiber reinforced concrete is suited for use in load-bearing members. Despite excellent material properties, the use of glass fibers in a concrete matrix is carried out so far only in non- structural elements or as a modification for the prevention of shrinkage cracks. The aim of re- search at the University of Applied Sciences in Leipzig is the use of alkali-resistant macro glass fibers as concrete reinforcement in structural elements as an alternative to steel fiber reinforcement. Slabs on ground, as an example for structural members, provide a sensible application for the new material because they can be casted as load bearing and non-load bearing and are mostly made of steel fiber reinforced concrete. In the future, structural glass fiber reinforced concrete shall provide a simple and visually appealing alternative to conventional steel bar or steel fiber reinforced concrete. The glass fibers can also be used in combination with conventional reinforcing bars or mat reinforcements. Initial investigations have announced some potential.展开更多
Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objective...Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.展开更多
This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures us...This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan.展开更多
Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surfac...Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surface(TPMS)-based double-layer porous structure were fabricated by digital light processing(DLP)with high precision.Property of suspension was first discussed to obtain better printing quality.After sintering,T-ZnO_(w) reacts with b-tricalcium phosphate(β-TCP)to form Ca_(19)Zn_(2)(PO_(4))14,and inhibits the phase transition toα-TCP.With the content of T-ZnO_(w) increasing from 0 to 2 wt%,the flexural strength increases from 40.9 to 68.5 MPa because the four-needle whiskers can disperse stress,and have the effect of pulling out as well as fracture toughening.However,excessive whiskers will reduce the cure depth,and cause more printing defects,thus reducing the mechanical strength.Besides,T-ZnO_(w) accelerates the deposition of apatite,and the sample with 2 wt%T-ZnO_(w) shows the fastest mineralization rate.The good biocompatibility has been proved by cell proliferation test.Results confirmed that doping T-ZnO_(w) can improve the mechanical strength of BCP scaffolds,and keep good biological property,which provides a new strategy for better bone repair.展开更多
基金National Natural Science Foundation of China(41475068,40805034)Special Scientific Research Project for Public Interest(GYHY201206009)Fundamental Research Funds for the Central Universities of China(lzujbky-2014-203)
文摘Based on the three-pattern decomposition of global atmospheric circulation(TPDGAC), this study investigates the double-layer structure of the Hadley circulation(HC) and its interdecadal evolution characteristics by using monthly horizontal wind field from NCEP/NCAR reanalysis data from 1948—2011. The following major conclusions are drawn: First, the double-layer structure of the HC is an objective fact, and it constantly exists in April,May, June, October and November in the Southern Hemisphere. Second, the double-layer structure is more obvious in the Southern than in the Northern Hemisphere. Since the double-layer structure is sloped in the vertical direction, it should be taken into consideration when analyzing the variations of the strength and location of the center of the HC.Third, the strength of the double-layer structure of the HC in the Southern Hemisphere consistently exhibits decadal variations with a strong, weak and strong pattern in all five months(April, May, June, October, and November), with cycles of 20-30 a and 40-60 a. Fourth, the center of the HC(mean position of the double-layer structure) in the Southern Hemisphere consistently and remarkably shifts southward in all the five months. The net poleward shifts over the 64 years are 5.18°, 2.11°, 2.50°, 1.79° and 5.76° for the five respective months, with a mean shift of 3.47°.
文摘In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engineers too confused to fully recognize its feasibility of this structure. Hence, based on the previous experimental research on the Taohutu mine construction project in Ordos in Inner Mongolia, this research paper aims to provide a widely deep numerical analysis by the usage of the finite element software, in fact, to establish the corresponding numerical analysis model and make a comparison with the experimental data to get the rationality of the verified model. The influence of the composite characteristics of the steel plate and concrete on the ultimate bearing capacity and stress field of the shaft wall structure is studied here through the method of multi-factor analysis. Also, the optimal design scheme of the double-layer steel plate and concrete composite shaft wall structure is proposed in this research paper.
基金Fund by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No.2018YFD1101002-03)。
文摘Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB 41000000)National Basic Research Program of China(Grant No.2015CB856106)National Natural Science Foundation of China(41774105,41820104004,41688103).
文摘The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation.However,petrological data indicate that the temperature of subducted continental plates is generally higher than that derived from numerical simulation.In this paper,a two-dimensional kinematic model is used to study the thermal structure of continental subduction zones,with or without a preceding oceanic slab.The results show that the removal of the preceding oceanic slab can effectively increase the slab surface temperature of the continental subduction zone in the early stage of subduction.This can sufficiently explain the difference between the cold thermal structure obtained from previous modeling results and the hot thermal structure obtained from rock sample data.
基金National Natural Science Foundation of China Under Grant No.51178028 and No.50938008Program for New Century Excellent Talents in University(NCET-11-0571)+1 种基金the Fundamental Research Funds for the Central Universities(2012JBM007)the 111 Project(B13002)
文摘With the opening of ancient Tibetan structures to visitors worldwide, human load has become the principal live load on these structures. This project studies the properties of the floor structure of an ancient Tibetan building and its behavior under human-induced load effects. Tests were conducted with static and dynamic crowd load, including stepping and jogging by people at a fixed position. The tests show that the floor structure does not behave as a continuous slab. It takes the load from local areas with minimal load transference properties. The acceleration response shows significant peaks when the footstep frequency is close to the natural frequency of the s~'ucture, but the human jogging excitation frequency does not have any obvious effect on the structural response. The elastic modulus of the Agatu material is estimated to be close to zero from the measured natural frequency of the slab. The Agatu material is concluded to be a discrete compacted material with insignificant contribution to the structural rigidity of the floor slab.
基金Project(51004031) supported by the National Natural Science Foundation of ChinaProject(50925415) supported by the National Outstanding Young Scientist Foundation of China+1 种基金Project(20100042120012) supported by the Special Research Fund for Doctoral Programs of Ministry of Education of ChinaProject(N090402022) supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-dimensional finite-element model of slab continuous casting mold was conducted to clarify the effect of cooling structure on thermal behavior of copper plates. The results show that temperature distribution of hot surface is mainly governed by cooling structure and heat-transfer conditions. For hot surface centricity, maximum surface temperature promotions are 30 ℃and 15 ℃ with thickness increments of copper plates of 5 mm and nickel layers of 1 ram, respectively. The surface temperature without nickel layers is depressed by 10 ℃ when the depth increment of water slots is 2 mm and that with nickel layers adjacent to and away from mold outlet is depressed by 7℃ and 5 ℃, respectively. The specific trend of temperature distribution of transverse sections of copper plates is nearly free of cooling structure, but temperature is changed and its law is similar to the corresponding surface temperature.
基金the Natural Science Foundation of Liaoning under grant No.20022150 the National Natural Science Foundation of China under grant No.50271030.
文摘By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) with nA, the number of electrons on the strongest covalent bonds, and the structure formation factor S were investigated, and an electron structural criterion to control and to eliminate the centerline segregation was advanced. Basing on this, the electron structures of a part of rare earth phosphides and sulfides are calculated, the physical mechanism that rare earth elements can control the segregation of phosphor and sulfur is analyzed, and the criterion is well verified.
文摘The purpose of this paper is to discuss the suitability of out-of-codes tall slab-column and shearwall structure and to popularize the structure in seismic region.In the research,flat-plate floor was used in slab-column and shearwall structure in the practical engineering,the key parameters of slab-column and shearwall structure and frame-shearwall structure such as deflection,punching shear behavior,story drift and capability curve were worked out by static plastic analysis,elastic-plastic time history analysis and pushover analysis,then the suitability of out-of-codes tall slab-column and shearwall structure was evaluated.The results show that the out-of-codes tall slab-column and shearwall structure studies could satisfy the require of deflection and punching shear behavior,the story drift under 7 degree expected rare earthquake waves could satisfy the limit value in the codes and the seismic design spectrum was crossed by the capability curve of the structure and the structure could not collapse.The conclusion is that slab-column and shearwall structure with reasonable design built in Ⅱ soil site of intensity 7 seismic fortification zone can be designed higher than the limit height in the codes.
文摘In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.
基金supported by the Aviation Science Foundation,China (Grant No.2009ZF52063)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20103227110006)the Jiangsu Provincial Postgraduate Cultivation and Innovation Project,China (Grant No.CX10B-257Z)
文摘Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz. For the singlelayer absorbers, the nanocrystalline SrFe12O19 microfibers show some microwave absorptions at 6 GHz 18 GHz, with a minimum reflection loss (RL) value of -11.9 dB at 14.1 GHz for a specimen thickness of 3.0 mm, while for the nanocrystalline α-Fe microfibers, their absorptions largely take place at 15 GHz-18 GHz with the RL value exceeding -10 dB, with a minimum .RL value of about -24 dB at 17.5 GHz for a specimen thickness of 0.7 mm. For the doublelayer absorber with an absorbing layer of α-Fe microfibers with a thickness of 0.7 mm and matching layer of SrFe12O19 microfibers with a thickness of 1.3 ram, the minimum RL value is about -63 dB at 16.4 GHz and the absorption band width is about 6.7 GHz ranging from 11.3 GHz to 18 GHz with the RL value exceeding -10 dB which covers the whole Ku-band (12.4 GHz 18 GHz) and 27% of X-band (8.2 GHz 12.4 GHz).
基金Funded by the Natural Science Foundation of Nanping of China(No.N2021J002)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110304)+3 种基金Guangzhou Science and Technology Plan(No.202102020224)Natural Science Foundation of Fujian Province(No.2020Y0092)Natural Science Foundation of Fujian Province(No.2023J011044)Resource Chemical Industry and Technology Foundation of Nanping(No.N2020Z003)。
文摘To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials.
基金supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金the National Basic Research Program of China (Grant Nos. 2011CB201605 and 2011CB201606)the National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.
文摘The present study investigates computer-antomated design and structural optimization of concrete slab frame bridges considering investment cost based on a complete 3D model. Thus, a computer code with several modules has been developed to produce parametric models of slab frame bridges. Design loads and load combinations are based on the Eurocode design standard and the Swedish design standard for bridges. The necessary reinforcement diagrams to satisfy the ultimate and serviceability limit states, including fatigue checks for the whole bridge, are calculated according to the aforementioned standards. Optimization techniques based on the genetic algorithm and the pattern search method are applied. A case study is presented to highlight the efficiency of the applied optimization algorithms. This methodology has been applied in the design process for the time-effective, material-efficient, and optimal design of concrete slab frame bridges.
文摘This paper aims to contribute to the classification and specification of glass fiber reinforced concrete (GFRC) and to deal with the question if structural glass fiber reinforced concrete as a special kind of glass fiber reinforced concrete is suited for use in load-bearing members. Despite excellent material properties, the use of glass fibers in a concrete matrix is carried out so far only in non- structural elements or as a modification for the prevention of shrinkage cracks. The aim of re- search at the University of Applied Sciences in Leipzig is the use of alkali-resistant macro glass fibers as concrete reinforcement in structural elements as an alternative to steel fiber reinforcement. Slabs on ground, as an example for structural members, provide a sensible application for the new material because they can be casted as load bearing and non-load bearing and are mostly made of steel fiber reinforced concrete. In the future, structural glass fiber reinforced concrete shall provide a simple and visually appealing alternative to conventional steel bar or steel fiber reinforced concrete. The glass fibers can also be used in combination with conventional reinforcing bars or mat reinforcements. Initial investigations have announced some potential.
文摘Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization.
文摘This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan.
基金This work was supported by the financial support from the Major Special Projects of Technological Innovation in Hubei Province(2019AAA002)the National Key R&D Program of China(2018YFB1105503)Fundamental Research Funds for the Central Universities(2019kfyXMPY020,2020kfyFPZX003,2018KFYYXJJ030,and 2019kfyXKJC011).
文摘Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surface(TPMS)-based double-layer porous structure were fabricated by digital light processing(DLP)with high precision.Property of suspension was first discussed to obtain better printing quality.After sintering,T-ZnO_(w) reacts with b-tricalcium phosphate(β-TCP)to form Ca_(19)Zn_(2)(PO_(4))14,and inhibits the phase transition toα-TCP.With the content of T-ZnO_(w) increasing from 0 to 2 wt%,the flexural strength increases from 40.9 to 68.5 MPa because the four-needle whiskers can disperse stress,and have the effect of pulling out as well as fracture toughening.However,excessive whiskers will reduce the cure depth,and cause more printing defects,thus reducing the mechanical strength.Besides,T-ZnO_(w) accelerates the deposition of apatite,and the sample with 2 wt%T-ZnO_(w) shows the fastest mineralization rate.The good biocompatibility has been proved by cell proliferation test.Results confirmed that doping T-ZnO_(w) can improve the mechanical strength of BCP scaffolds,and keep good biological property,which provides a new strategy for better bone repair.