The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annu...The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annular volutes are available, and there is no systematic design method for annular volutes. In this study, the influence of volute casing cross-sectional flow area on the hydraulic loss, pressure pulsations, and radial force under varying working conditions in a centrifugal ceramic pump are discussed in detail. Experimental tests were conducted to validate the numerical results. The results indicated that, when the volute casing flow area increases, the hydraulic performance decreases marginally under the rated working conditions, but increases at the o-design points, specifically under large flow condition. However, the volute casing with a larger flow area has a wider high-e ciency region. In addition, the increase in the volute casing flow area will decrease the pressure pulsations in the volute, regardless of the working condition, and decrease the radial force on the shaft, therefore, providing an improved pump operational stability. It is anticipated that this study will be of benefit during the design of annular volutes.展开更多
With extensively using of centrifugal pumps,noise generation in these pumps is increasingly receiving research attention in recent years.The noise sources in centrifugal pumps are mainly composed of mechanical noise a...With extensively using of centrifugal pumps,noise generation in these pumps is increasingly receiving research attention in recent years.The noise sources in centrifugal pumps are mainly composed of mechanical noise and flow-induced noise.And the study of flow-induced noise has become a hotspot and important domain in the field.The flow-induced noise closely related to the inner pressure pulses and vibration of volute in pumps,therefore,it is necessary to research the interaction and mechanism among them.To investigate the relationships,a test system is designed which includes a test loop and a measurement system.The hydrophones and pressure sensors are installed on the outlet of the pump and vibration acceleration sensors are disposed on the pump body.Via these instruments,the signals of noise,pressure pulses and vibration are collected and analyzed.The results show that the level of flow-induced noise becomes smaller as the flow increment during low flow rate operations,and it is steadily close to the design point,then it increases with the growing of flow rate in high flow rate conditions.Furthermore,there are some similar peak points in the power spectrum charts of noise,pressure pulses and vibration.The broadband noise at low flow rate is mostly focused on the region of 0-40 times shaft frequency,which is mostly made by rotating stall and vortex;while the noise at high flow rate conditions is focused on the region of 60-100 times shaft frequency,which may be mostly made by cavitations.The proposed research is of practical and academic significance to the study of noise reduction for centrifugal pumps.展开更多
蜗壳式离心泵作为流体输送的核心设备,压力脉动及水利性能对泵的稳定性、噪声、寿命等有重大影响。结合曲率控制前缘的设计方法,按增长率1.19%、0.47%、0.32%设计,建立前缘轴长比为0.96、2.11、3.11、4.11的蜗壳式离心泵,以SSTκ-ω模...蜗壳式离心泵作为流体输送的核心设备,压力脉动及水利性能对泵的稳定性、噪声、寿命等有重大影响。结合曲率控制前缘的设计方法,按增长率1.19%、0.47%、0.32%设计,建立前缘轴长比为0.96、2.11、3.11、4.11的蜗壳式离心泵,以SSTκ-ω模型定常计算结果为初始条件,进行κ-εRNG模型非定常分析,通过频域图分析蜗壳式离心泵压力脉动,并通过矢量云图分析水力性能。结果表明:设计的模型最佳流量为35 m 3/h,设计效率与模拟效率误差仅为2%;前缘轴长比不同,流道内压力扩散有差异;前缘轴长比为3.11时出口压力脉动偏低,低频区更易产生压力脉动;前缘轴长比为0.96时,压力脉动范围偏小,适用于一定流量范围内扬程变化较大的工况。展开更多
The volute tongue,as the crucial component inducing rotor-stator interaction,is detrimental to unsteady pressure pulsations of centrifugal pumps.In the present paper,to investigate the effect of the volute tongue cut ...The volute tongue,as the crucial component inducing rotor-stator interaction,is detrimental to unsteady pressure pulsations of centrifugal pumps.In the present paper,to investigate the effect of the volute tongue cut on pressure pulsations of a low specific speed centrifugal pump,three volute tongues are obtained through twice cuts,named cases 1,2,3.Twenty measuring points are evenly mounted on periphery of the volute casing to obtain unsteady pressure signals using high response transducers.Pressure amplitudes at the blade passing frequency fBPF and root mean square(rms)values in 0 Hz-500 Hz frequency band are applied to evaluate the cutting effect.Results show that pressure spectrum is significantly affected by the volute tongue cut,especially for the component at fBPF.For different measuring points,influences of the volute tongue cut on three cases are not identical.From nns values,it is evident that cutting the volute tongue will lead to pressure energy increasing for most of the concerned measuring points,especially for the points at the far away region from the volute tongue.Finally,from comparison with the original shape case 1,the averaged increment of the twenty points is more than 20%.So it is concluded that for this type centrifugal pump,cutting the volute tongue is not reasonable considering low pressure pulsation requirement.展开更多
The flows of water as well as viscous oil in the three rectangular sections of the volute of a centrifugal pump are measured by using a two-dimensional laser Doppler velocimetry(LDV) in the best efficiency and part-lo...The flows of water as well as viscous oil in the three rectangular sections of the volute of a centrifugal pump are measured by using a two-dimensional laser Doppler velocimetry(LDV) in the best efficiency and part-loading points, respectively. The results show that the magnitude of tangential component of absolute velocity is one order larger than that of radial component. There are spiral motions in the sections of the volute. The angular momentum of liquid in the volute isn’t conservative and the viscosity of liquid is larger, this situation is more severe. The flow of water or viscous oil in the volute is diffused in both best efficiency point and part-loading points. The diffusion of the flow is weakened while pumping the viscous oil.展开更多
Numerical simulation and 3-D periodic flow unsteadiness analysis for a centrifugal pump with volute are carried out in whole flow passage, including the impeller with twisted blades, the volute and the side chamber ch...Numerical simulation and 3-D periodic flow unsteadiness analysis for a centrifugal pump with volute are carried out in whole flow passage, including the impeller with twisted blades, the volute and the side chamber channels under a part-load condition. The pressure fluctuation intensity coefficient (PFIC) based on the standard deviation method, the time-averaged velocity unsteadiness intensity coefficient (VUIC) and the time-averaged turbulence intensity coefficient (TIC) are defined by averaging the results at each grid node for an entire impeller revolution period. Therefore, the strength distributions of the periodic flow unsteadiness based on the unsteady Reynolds-averaged Navier-Stokes (URANS) equations can be analyzed directly and in detail. It is shown that under the 0.6Qd~. condition, the pressure fluctuation intensity is larger near the blade pressure side than near the suction side, and a high fluctuation intensity can be observed at the beginning section of the spiral of the volute. The flow velocity unsteadiness intensity is larger near the blade suction side than near the pressure side. A strong turbulence intensity can be found near the blade suction side, the impeller shroud side as well as in the side chamber. The leakage flow has a significant effect on the inflow of the impeller, and can increase both the flow velocity unsteadiness intensity and the turbulence intensity near the wall. The accumulative flow unstea- diness results of an impeller revolution can be an important aspect to be considered in the centrifugal pump optimum design for obtaining a more stable inner flow of the pump and reducing the flow-induced vibration and noise in certain components.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51779107)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20170548)+1 种基金Postdoctoral Science Foundation of China(Grant No.2017M611724)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The annular volute is typically used in a slurry pump to reduce the collisions between solid particles and the volute tongue and to achieve a better resistance to blocking. However, only limited studies regarding annular volutes are available, and there is no systematic design method for annular volutes. In this study, the influence of volute casing cross-sectional flow area on the hydraulic loss, pressure pulsations, and radial force under varying working conditions in a centrifugal ceramic pump are discussed in detail. Experimental tests were conducted to validate the numerical results. The results indicated that, when the volute casing flow area increases, the hydraulic performance decreases marginally under the rated working conditions, but increases at the o-design points, specifically under large flow condition. However, the volute casing with a larger flow area has a wider high-e ciency region. In addition, the increase in the volute casing flow area will decrease the pressure pulsations in the volute, regardless of the working condition, and decrease the radial force on the shaft, therefore, providing an improved pump operational stability. It is anticipated that this study will be of benefit during the design of annular volutes.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)National Natural Science Foundation of China (Grant No. 50979034)+2 种基金Jiangsu Provincial Innovative Scholars "Climbing" Project of China (Grant No. BK2009006)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2009218)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘With extensively using of centrifugal pumps,noise generation in these pumps is increasingly receiving research attention in recent years.The noise sources in centrifugal pumps are mainly composed of mechanical noise and flow-induced noise.And the study of flow-induced noise has become a hotspot and important domain in the field.The flow-induced noise closely related to the inner pressure pulses and vibration of volute in pumps,therefore,it is necessary to research the interaction and mechanism among them.To investigate the relationships,a test system is designed which includes a test loop and a measurement system.The hydrophones and pressure sensors are installed on the outlet of the pump and vibration acceleration sensors are disposed on the pump body.Via these instruments,the signals of noise,pressure pulses and vibration are collected and analyzed.The results show that the level of flow-induced noise becomes smaller as the flow increment during low flow rate operations,and it is steadily close to the design point,then it increases with the growing of flow rate in high flow rate conditions.Furthermore,there are some similar peak points in the power spectrum charts of noise,pressure pulses and vibration.The broadband noise at low flow rate is mostly focused on the region of 0-40 times shaft frequency,which is mostly made by rotating stall and vortex;while the noise at high flow rate conditions is focused on the region of 60-100 times shaft frequency,which may be mostly made by cavitations.The proposed research is of practical and academic significance to the study of noise reduction for centrifugal pumps.
文摘蜗壳式离心泵作为流体输送的核心设备,压力脉动及水利性能对泵的稳定性、噪声、寿命等有重大影响。结合曲率控制前缘的设计方法,按增长率1.19%、0.47%、0.32%设计,建立前缘轴长比为0.96、2.11、3.11、4.11的蜗壳式离心泵,以SSTκ-ω模型定常计算结果为初始条件,进行κ-εRNG模型非定常分析,通过频域图分析蜗壳式离心泵压力脉动,并通过矢量云图分析水力性能。结果表明:设计的模型最佳流量为35 m 3/h,设计效率与模拟效率误差仅为2%;前缘轴长比不同,流道内压力扩散有差异;前缘轴长比为3.11时出口压力脉动偏低,低频区更易产生压力脉动;前缘轴长比为0.96时,压力脉动范围偏小,适用于一定流量范围内扬程变化较大的工况。
基金Supported by the National Natural Science Foundation of China(Grant Nos.51706086,51576090).
文摘The volute tongue,as the crucial component inducing rotor-stator interaction,is detrimental to unsteady pressure pulsations of centrifugal pumps.In the present paper,to investigate the effect of the volute tongue cut on pressure pulsations of a low specific speed centrifugal pump,three volute tongues are obtained through twice cuts,named cases 1,2,3.Twenty measuring points are evenly mounted on periphery of the volute casing to obtain unsteady pressure signals using high response transducers.Pressure amplitudes at the blade passing frequency fBPF and root mean square(rms)values in 0 Hz-500 Hz frequency band are applied to evaluate the cutting effect.Results show that pressure spectrum is significantly affected by the volute tongue cut,especially for the component at fBPF.For different measuring points,influences of the volute tongue cut on three cases are not identical.From nns values,it is evident that cutting the volute tongue will lead to pressure energy increasing for most of the concerned measuring points,especially for the points at the far away region from the volute tongue.Finally,from comparison with the original shape case 1,the averaged increment of the twenty points is more than 20%.So it is concluded that for this type centrifugal pump,cutting the volute tongue is not reasonable considering low pressure pulsation requirement.
文摘The flows of water as well as viscous oil in the three rectangular sections of the volute of a centrifugal pump are measured by using a two-dimensional laser Doppler velocimetry(LDV) in the best efficiency and part-loading points, respectively. The results show that the magnitude of tangential component of absolute velocity is one order larger than that of radial component. There are spiral motions in the sections of the volute. The angular momentum of liquid in the volute isn’t conservative and the viscosity of liquid is larger, this situation is more severe. The flow of water or viscous oil in the volute is diffused in both best efficiency point and part-loading points. The diffusion of the flow is weakened while pumping the viscous oil.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51239005,51009072)the National Science and Technology Pillar Program of China(Grant No.2011BAF14B04)
文摘Numerical simulation and 3-D periodic flow unsteadiness analysis for a centrifugal pump with volute are carried out in whole flow passage, including the impeller with twisted blades, the volute and the side chamber channels under a part-load condition. The pressure fluctuation intensity coefficient (PFIC) based on the standard deviation method, the time-averaged velocity unsteadiness intensity coefficient (VUIC) and the time-averaged turbulence intensity coefficient (TIC) are defined by averaging the results at each grid node for an entire impeller revolution period. Therefore, the strength distributions of the periodic flow unsteadiness based on the unsteady Reynolds-averaged Navier-Stokes (URANS) equations can be analyzed directly and in detail. It is shown that under the 0.6Qd~. condition, the pressure fluctuation intensity is larger near the blade pressure side than near the suction side, and a high fluctuation intensity can be observed at the beginning section of the spiral of the volute. The flow velocity unsteadiness intensity is larger near the blade suction side than near the pressure side. A strong turbulence intensity can be found near the blade suction side, the impeller shroud side as well as in the side chamber. The leakage flow has a significant effect on the inflow of the impeller, and can increase both the flow velocity unsteadiness intensity and the turbulence intensity near the wall. The accumulative flow unstea- diness results of an impeller revolution can be an important aspect to be considered in the centrifugal pump optimum design for obtaining a more stable inner flow of the pump and reducing the flow-induced vibration and noise in certain components.