期刊文献+
共找到6,472篇文章
< 1 2 250 >
每页显示 20 50 100
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
1
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Finite-Time Stabilization for Constrained Discrete-time Systems by Using Model Predictive Control
2
作者 Bing Zhu Xiaozhuoer Yuan +1 位作者 Li Dai Zhiwen Qiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1656-1666,共11页
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar... In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples. 展开更多
关键词 CONSTRAINTS deadbeat control finite-time stabilization model predictive control(MPC)
下载PDF
Uncertainty and disturbance estimator-based model predictive control for wet flue gas desulphurization system
3
作者 Shan Liu Wenqi Zhong +2 位作者 Li Sun Xi Chen Rafal Madonski 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期182-194,共13页
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis... Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error. 展开更多
关键词 Desulphurization system Disturbance rejection model predictive control Uncertainty and disturbance estimator Nonlinear system
下载PDF
Path-Following Based on Nonlinear Model Predictive Control with Adaptive Path Preview
4
作者 Jun-Ting LI Chih-Keng CHEN 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第S01期158-164,共7页
This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,... This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC. 展开更多
关键词 path following curvilinear coordinates nonlinear model predictive control
下载PDF
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
5
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 Distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
Enhancing Safety in Autonomous Vehicle Navigation:An Optimized Path Planning Approach Leveraging Model Predictive Control
6
作者 Shih-Lin Lin Bo-Chen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3555-3572,共18页
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra... This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems. 展开更多
关键词 Autonomous driving model predictive control(MPC) lane change maneuver(LCM) adaptive cruise control(ACC)
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
7
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control
8
作者 Jun Zhao Chaoying Yang +1 位作者 Ran Li Jinge Song 《Energy Engineering》 EI 2024年第3期747-767,共21页
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve... Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples. 展开更多
关键词 Demand response model predictive control multiple time scales operating simulation
下载PDF
Disturbance rejection tube model predictive levitation control of maglev trains
9
作者 Yirui Han Xiuming Yao Yu Yang 《High-Speed Railway》 2024年第1期57-63,共7页
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa... Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy. 展开更多
关键词 Maglev trains Levitation system Constrained control Disturbance observer model predictive control
下载PDF
Model Predictive Control for Cascaded H-Bridge PV Inverter with Capacitor Voltage Balance
10
作者 Xinwei Wei Wanyu Tao +4 位作者 Xunbo Fu Xiufeng Hua Zhi Zhang Xiaodan Zhao Chen Qin 《Journal of Electronic Research and Application》 2024年第2期79-85,共7页
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc... We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules. 展开更多
关键词 model predictive control(MPC) Photovoltaic system Cascaded H-bridge(CHB)inverter Capacitor voltage balance
下载PDF
Multivariable Fuzzy Predictive Control Based on the Modified CPN Model
11
作者 郑怀林 陈维南 《Journal of Southeast University(English Edition)》 EI CAS 1998年第1期108-113,共6页
Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competiti... Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect. 展开更多
关键词 modified CPN model fuzzy predictive control MULTIVARIABLE time delay systems
下载PDF
Real-Time Co-optimization of Gear Shifting and Engine Torque for Predictive Cruise Control of Heavy-Duty Trucks
12
作者 Hongqing Chu Xiaoxiang Na +4 位作者 Huan Liu Yuhai Wang Zhuo Yang Lin Zhang Hong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期294-317,共24页
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea... Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time. 展开更多
关键词 Heavy-duty truck predictive cruise control model predictive control Pontryagin’s maximum principle Real-truck implementation
下载PDF
A Survey of Model Predictive Control Methods for Traffic Signal Control 被引量:10
13
作者 Bao-Lin Ye Weimin Wu +4 位作者 Keyu Ruan Lingxi Li Tehuan Chen Huimin Gao Yaobin Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期623-640,共18页
Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Sinc... Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Since model predictive control(MPC) has a lot of advantages in modeling complex dynamic systems, it has been widely studied in traffic signal control over the past 20 years. There is a need for an in-depth understanding of MPC-based TSC methods for traffic networks. Therefore, this paper presents the motivation of using MPC for TSC and how MPC-based TSC approaches are implemented to manage and control the dynamics of traffic flows both in urban road networks and freeway networks. Meanwhile, typical performance evaluation metrics, solution methods, examples of simulations,and applications related to MPC-based TSC approaches are reported. More importantly, this paper summarizes the recent developments and the research trends in coordination and control of traffic networks with MPC-based TSC approaches. Remaining challenges and open issues are discussed towards the end of this paper to discover potential future research directions. 展开更多
关键词 Autonomous vehicles COORDINATION control mixed INTEGER PROGRAMMING model predictive control system decomposition TRAFFIC flow models TRAFFIC signal control
下载PDF
Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking 被引量:23
14
作者 龚建伟 徐威 +3 位作者 姜岩 刘凯 郭红芬 孙银健 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期441-448,共8页
A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering l... A multi-constrained model predictive control ( MPC ) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computa- tion, an active steering linear error model is applied in the MPC controller. Then, a control incre- ment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed control- ler at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/ s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability. 展开更多
关键词 autonomous ground vehicle active steering control model predictive control trajecto-ry tracking
下载PDF
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:17
15
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presen... Reliable load frequency control LFC is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-Area interconnected power system with wind turbines, this paper presents a distributed model predictive control DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints GRCs, load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints. © 2014 Chinese Association of Automation. 展开更多
关键词 Asynchronous generators Electric control equipment Electric fault currents Electric frequency control Electric load management Electric power systems model predictive control Optimization Press load control WIND Wind turbines
下载PDF
Adaptive nonlinear model predictive control design of a flexible-link manipulator with uncertain parameters 被引量:7
16
作者 Fabian Schnelle Peter Eberhard 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第3期529-542,共14页
This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented... This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback linearization, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization problem of the model predictive controller significantly, which, however, is no longer linear in the presence of parameter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space. 展开更多
关键词 model predictive control Feedback linearization Unscented Kalman filter Flexible-link manipulator Fuzzy-arithmetical analysis
下载PDF
Robust Adaptive Gain Higher Order Sliding Mode Observer Based Control-constrained Nonlinear Model Predictive Control for Spacecraft Formation Flying 被引量:9
17
作者 Ranjith Ravindranathan Nair Laxmidhar Behera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期367-381,共15页
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher... This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach. 展开更多
关键词 Adaptive gain higher order sliding mode observer leader-follower formation nonlinear model predictive control spacecraft formation flying tracking control
下载PDF
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
18
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
下载PDF
Constrained predictive control based on T-S fuzzy model for nonlinear systems 被引量:7
19
作者 Su Baili Chen Zengqiang Yuan Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期95-100,共6页
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th... A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems. 展开更多
关键词 Generalized predictive control (GPC) Nonlinear system T-S fuzzy model Input constraint Fuzzy cluster
下载PDF
Comparative Study of Trajectory Tracking Control for Automated Vehicles via Model Predictive Control and Robust H-infinity State Feedback Control 被引量:13
20
作者 Kai Yang Xiaolin Tang +3 位作者 Yechen Qin Yanjun Huang Hong Wang Huayan Pu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期168-181,共14页
A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC co... A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed. 展开更多
关键词 Trajectory tracking Automated vehicles model predictive control Robust H∞state feedback control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部