The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common...The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions ca...Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.展开更多
We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform ax...We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.展开更多
At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These fo...At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These formations are being encountered when drilling boreholes to the depth of up to 2 0 0 m. To studythe behaviour of these materials, thick-walled hollow cylinder (TWHC) and solid cylindrical syntheticspecimens were designed and prepared by adding Portland cement and water to sand grains. The effectsof different parameters such as water and cement contents, grain size distribution and mixture curingtime on the characteristics of the samples were studied to identify the mixture closely resembling theformation at the drilling site. The Hoek triaxia! cell was modified to allow the visual monitoring of graindebonding and borehole breakout processes during the laboratory tests. The results showed the significanceof real-time visual monitoring in determining the initiation of the borehole breakout. The sizescaleeffect study on TWHC specimens revealed that with the increasing borehole size, the ductility ofthe specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged.Under different confining pressures the lateral strain at the initiation point of boreholebreakout is considerably lower in a larger size borehole (2 0 mm) compared to that in a smaller one(10 mm). Also, it was observed that the level of peak strength increment in TWHC specimens decreaseswith the increasing confining pressure.展开更多
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ...Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.展开更多
In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled ...In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.展开更多
Impermeable bentonite or its mixtures have been proposed as candidate materials to be used in the geotechnical disposal of radioactive nuclear waste. These materials are filled in the space between a canister containi...Impermeable bentonite or its mixtures have been proposed as candidate materials to be used in the geotechnical disposal of radioactive nuclear waste. These materials are filled in the space between a canister containing radioactive nuclear waste and an underground chamber to absorb the radionuclide emitting from the canister and simultaneously retard its migration accompanying the perrneation of underground water to prevent the surrounding environment from po1lution. On the basis of the established elastoplastic strain-hardening mechanical model considering the material’s dilatancy character,the authors carry out the stress-strain analysis of a thick-wa1l cylinder in a plane strain state subJected to a pressure difference between internal and external pressures. The analysis may be expected to be a theoretical basis for developing a coupled shear and permeability test apparatus for conducting a permeability test along a sheared plane in a specimen. The apparatus will be used to study the effects of shear strain on the variation of geotechnical materials’ permeability coefficient in order to evaluate the influence of shear strain caused by nonuniform deformation and/or earthquake on the long-term safety of the disposal system of radioactive nuclear waste. The theoretlcal analysls methods in this paper can be directly spread to the analysis of the deformation and stability of tunnels or roadways driven in soft soils or high moisture-bearing soft rocks.展开更多
Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engin...Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.展开更多
A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The ex...A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.展开更多
The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with...The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with bending and expanding happens in the process of hole flanging. The diameter of pre-hole of the workpiece is one of the key parameters in the process of hole flanging. The optimal diameter is obtained for reverse-conical hole of average diameter 40 mm by simulation of hole flanging process on 5 pre-holes with different diameters and 3 pre-holes with different shapes. The results can provide the scientific base for engineering application of the process.展开更多
A long thick-walled hollow cylinder of piezothermoelastic materials was studied in this work. The gradient prop- erty of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to ...A long thick-walled hollow cylinder of piezothermoelastic materials was studied in this work. The gradient prop- erty of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to obtain the exact solutions of the cylinder subjected simultaneously to thermal and electric loadings. As an application, these solutions have been success- fully used to study the inverse problems of the material. For comparison, numerical results have been carried out for both graded and double-layered cylinders.展开更多
Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of ...Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of composite material cartridges is established based on the thick-walled cylinder theory and rate-dependent constitutive model of composite materials.The correctness of the theoretical model is validated through finite element simulations of cartridge deformation.The influence of chamber pressure and cartridge wall thickness on the cartridge's deformation process and stress distribution is analyzed.The results indicate that the primary deformation of composite material cartridges inside the chamber is elastic deformation.Compared to metal cartridges,composite material cartridges require higher pressure for touching-chamber and are more prone to developing gaps after unloading to ensure smooth extraction.During the deformation process,the touching-chamber behavior of the cartridge can improve the stress distribution.Under the same chamber pressure,the touching-chamber behavior can reduce the circumferential stress by approximately 30%.The inner wall surface of the cartridge is a critical area that requires attention.The touching-chamber behavior can be facilitated by appropriately reducing the cartridge wall thickness while ensuring overall strength.This study can provide guidance for the optimization design of composite material cartridges.展开更多
To our best knowledge,in the open literature,there is no analytical solution of thick-walled cylinder subjected to uniform pressures at two ends and different inner-and outer-surface pressures that are constant circum...To our best knowledge,in the open literature,there is no analytical solution of thick-walled cylinder subjected to uniform pressures at two ends and different inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis.We now present such a solution.After repeated trials,we have finally succeeded in finding a necessary new displacement function.Based on A.E.H.Love method,the stress,displacement and volume strain formulas are derived by using the new displacement function.The present results include the Lamé’s formulas as special cases.Furthermore,the results obtained here can be applied to not only the thick-walled cylinders subjected to uniform pressures on the inner and outer surface of the thick-walled cylinder,respectively,but also the cylinders subjected to uniform pressures at two ends and dif- ferent inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis,respectively.Finally we give a numerical example to compare our exact method with the approximate method.展开更多
The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the ...The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the framework of linear elastodynamics.Exact semi-analytical solutions for the steady-state displacement field of the cylinder are constructed using recently-published parametric solutions to the Navier-Lam´e equation.Formal application of the standing-wave boundary conditions generates three parameter-dependent 66 linear systems,each of which can be numerically solved in order to determine the parametric response of the cylinder’s displacement field under various conditions.The method of solution is direct and demonstrates a general approach that can be applied to solve many other elastodynamic forcedresponse problems involving isotropic elastic cylinders.As an application,and considering several examples,the obtained solution is used to compute the steady-state frequency response in a few specific low-order excitation cases.In each case,the solution generates a series of resonances that are in exact correspondence with a unique subset of the natural frequencies of the simply-supported cylinder.The considered problem is of general theoretical interest in structural mechanics and acoustics and more practically serves as a benchmark forced-vibration problem involving a thickwalled hollow elastic cylinder.展开更多
This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under cha...This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under changes of winding angle due to deformation,we use three-dimensional(3D)thick-walled cylinder theory with the 3D Hashin failure criterion and theory of the evolution of damage to composite materials,to formulate a model that analyzes the progressive failure of RTPs.The accuracy of the model was verified by experiments.A model to optimize the multiple winding angles of the RTPs was then established using the model for progressive failure analysis and a multi-island genetic algorithm.The optimal scheme for winding angles of RTPs capable of withstanding the maximum internal/external pressure was obtained.The simulation results showed that the ply number of the reinforced layer has a prominent nonlinear effect on the internal and external pressure capacity of the RTPs.Compared with RTPs with a single angle of±55°,the multiple winding angle overlay scheme based on the multi-angle optimization model improved the internal and external pressure capacity of the RTPs,and the improvement in the external pressure capacity was significantly better than the internal pressure carrying capacity.展开更多
The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were co...The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were conducted to analyze the dynamic response of cartridge cases during internal impact considering the initial radial clearances between the cartridge case and chamber.A theoretical model was proposed to predict the cartridge case headspace considering both the deformation and movement of the cartridge case and confirmed by the results of nonlinear finite element simulations.The differences between the results of the conventional static model and the dynamic model were then comprehensively evaluated.The effects of the angle between the cartridge and chamber,the cartridge case material,and the intermal impact pressure on the predicted headspace value were also analyzed.The dynamic response of the cartridge case predicted by the dynamic model was more accurate than that predicted by the conventional static model.The internal impact pressure,pressure change rate,and cartridge material were all found to affect the predicted headspace.展开更多
基金Projects(50874047,51074014,51174014)supported by the National Natural Science Foundation of China
文摘The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
基金supported by the Ph. D. Programs Foundation of Ministry of Education of China(No. 20050403002)
文摘Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.
基金Lyudmila Petrova for invaluable metrological support. A.I.D. also thanks RFBR grant no. 15-08-01511a
文摘We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.
基金supported by the Deep Exploration Technologies Cooperative Research Centre whose activities are funded by the Australian Government’s Research Programme
文摘At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These formations are being encountered when drilling boreholes to the depth of up to 2 0 0 m. To studythe behaviour of these materials, thick-walled hollow cylinder (TWHC) and solid cylindrical syntheticspecimens were designed and prepared by adding Portland cement and water to sand grains. The effectsof different parameters such as water and cement contents, grain size distribution and mixture curingtime on the characteristics of the samples were studied to identify the mixture closely resembling theformation at the drilling site. The Hoek triaxia! cell was modified to allow the visual monitoring of graindebonding and borehole breakout processes during the laboratory tests. The results showed the significanceof real-time visual monitoring in determining the initiation of the borehole breakout. The sizescaleeffect study on TWHC specimens revealed that with the increasing borehole size, the ductility ofthe specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged.Under different confining pressures the lateral strain at the initiation point of boreholebreakout is considerably lower in a larger size borehole (2 0 mm) compared to that in a smaller one(10 mm). Also, it was observed that the level of peak strength increment in TWHC specimens decreaseswith the increasing confining pressure.
基金supported by the China Aviation Industry Corporation I Program (ATPD-1104-02).
文摘Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos.50804046, 50490273 and 50774082)the Scientific Research Fund for Youths of CUMT (No. 0B080240)
文摘In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thickwalled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.
文摘Impermeable bentonite or its mixtures have been proposed as candidate materials to be used in the geotechnical disposal of radioactive nuclear waste. These materials are filled in the space between a canister containing radioactive nuclear waste and an underground chamber to absorb the radionuclide emitting from the canister and simultaneously retard its migration accompanying the perrneation of underground water to prevent the surrounding environment from po1lution. On the basis of the established elastoplastic strain-hardening mechanical model considering the material’s dilatancy character,the authors carry out the stress-strain analysis of a thick-wa1l cylinder in a plane strain state subJected to a pressure difference between internal and external pressures. The analysis may be expected to be a theoretical basis for developing a coupled shear and permeability test apparatus for conducting a permeability test along a sheared plane in a specimen. The apparatus will be used to study the effects of shear strain on the variation of geotechnical materials’ permeability coefficient in order to evaluate the influence of shear strain caused by nonuniform deformation and/or earthquake on the long-term safety of the disposal system of radioactive nuclear waste. The theoretlcal analysls methods in this paper can be directly spread to the analysis of the deformation and stability of tunnels or roadways driven in soft soils or high moisture-bearing soft rocks.
基金supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No. 12A087)Innovation Fund for Technology Based Firms(Grant No. 09C26214305047)
文摘Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.
文摘A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.
文摘The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with bending and expanding happens in the process of hole flanging. The diameter of pre-hole of the workpiece is one of the key parameters in the process of hole flanging. The optimal diameter is obtained for reverse-conical hole of average diameter 40 mm by simulation of hole flanging process on 5 pre-holes with different diameters and 3 pre-holes with different shapes. The results can provide the scientific base for engineering application of the process.
基金Project supported by the National Natural Science Foundation of China (No. 50272003) and the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China
文摘A long thick-walled hollow cylinder of piezothermoelastic materials was studied in this work. The gradient prop- erty of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to obtain the exact solutions of the cylinder subjected simultaneously to thermal and electric loadings. As an application, these solutions have been success- fully used to study the inverse problems of the material. For comparison, numerical results have been carried out for both graded and double-layered cylinders.
基金supported by the National Defense National Defense Pre-Research Foundation of China(Grant no.301030102)。
文摘Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of composite material cartridges is established based on the thick-walled cylinder theory and rate-dependent constitutive model of composite materials.The correctness of the theoretical model is validated through finite element simulations of cartridge deformation.The influence of chamber pressure and cartridge wall thickness on the cartridge's deformation process and stress distribution is analyzed.The results indicate that the primary deformation of composite material cartridges inside the chamber is elastic deformation.Compared to metal cartridges,composite material cartridges require higher pressure for touching-chamber and are more prone to developing gaps after unloading to ensure smooth extraction.During the deformation process,the touching-chamber behavior of the cartridge can improve the stress distribution.Under the same chamber pressure,the touching-chamber behavior can reduce the circumferential stress by approximately 30%.The inner wall surface of the cartridge is a critical area that requires attention.The touching-chamber behavior can be facilitated by appropriately reducing the cartridge wall thickness while ensuring overall strength.This study can provide guidance for the optimization design of composite material cartridges.
文摘To our best knowledge,in the open literature,there is no analytical solution of thick-walled cylinder subjected to uniform pressures at two ends and different inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis.We now present such a solution.After repeated trials,we have finally succeeded in finding a necessary new displacement function.Based on A.E.H.Love method,the stress,displacement and volume strain formulas are derived by using the new displacement function.The present results include the Lamé’s formulas as special cases.Furthermore,the results obtained here can be applied to not only the thick-walled cylinders subjected to uniform pressures on the inner and outer surface of the thick-walled cylinder,respectively,but also the cylinders subjected to uniform pressures at two ends and dif- ferent inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis,respectively.Finally we give a numerical example to compare our exact method with the approximate method.
基金support from the Natural Sciences and Engineering Research Council(NSERC)of Canada and the Ontario Research Foundation(ORF).
文摘The forced-vibration response of a simply-supported isotropic thick-walled hollow elastic circular cylinder subjected to two-dimensional harmonic standing-wave excitations on its curved surfaces is studied within the framework of linear elastodynamics.Exact semi-analytical solutions for the steady-state displacement field of the cylinder are constructed using recently-published parametric solutions to the Navier-Lam´e equation.Formal application of the standing-wave boundary conditions generates three parameter-dependent 66 linear systems,each of which can be numerically solved in order to determine the parametric response of the cylinder’s displacement field under various conditions.The method of solution is direct and demonstrates a general approach that can be applied to solve many other elastodynamic forcedresponse problems involving isotropic elastic cylinders.As an application,and considering several examples,the obtained solution is used to compute the steady-state frequency response in a few specific low-order excitation cases.In each case,the solution generates a series of resonances that are in exact correspondence with a unique subset of the natural frequencies of the simply-supported cylinder.The considered problem is of general theoretical interest in structural mechanics and acoustics and more practically serves as a benchmark forced-vibration problem involving a thickwalled hollow elastic cylinder.
基金This research was funded by the National Key Research and Development Program of China(No.2016YFC0303800)the National Natural Science Foundation of China(No.51579245).
文摘This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under changes of winding angle due to deformation,we use three-dimensional(3D)thick-walled cylinder theory with the 3D Hashin failure criterion and theory of the evolution of damage to composite materials,to formulate a model that analyzes the progressive failure of RTPs.The accuracy of the model was verified by experiments.A model to optimize the multiple winding angles of the RTPs was then established using the model for progressive failure analysis and a multi-island genetic algorithm.The optimal scheme for winding angles of RTPs capable of withstanding the maximum internal/external pressure was obtained.The simulation results showed that the ply number of the reinforced layer has a prominent nonlinear effect on the internal and external pressure capacity of the RTPs.Compared with RTPs with a single angle of±55°,the multiple winding angle overlay scheme based on the multi-angle optimization model improved the internal and external pressure capacity of the RTPs,and the improvement in the external pressure capacity was significantly better than the internal pressure carrying capacity.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372137 and 11602025)Equipment Development Department of the Central Military Commission of China(Grant No.301030905)。
文摘The cartridge case headspace is the axial clearance between the cartridge and bolt of an automatic weapon,and influences the reliability and security of the weapon.Accordingly,theoretical and numerical studies were conducted to analyze the dynamic response of cartridge cases during internal impact considering the initial radial clearances between the cartridge case and chamber.A theoretical model was proposed to predict the cartridge case headspace considering both the deformation and movement of the cartridge case and confirmed by the results of nonlinear finite element simulations.The differences between the results of the conventional static model and the dynamic model were then comprehensively evaluated.The effects of the angle between the cartridge and chamber,the cartridge case material,and the intermal impact pressure on the predicted headspace value were also analyzed.The dynamic response of the cartridge case predicted by the dynamic model was more accurate than that predicted by the conventional static model.The internal impact pressure,pressure change rate,and cartridge material were all found to affect the predicted headspace.